试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中,所有正确的结论是( )试题及答案-单选题-云返教育
试题详情
如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中,所有正确的结论是( )
试题解答
解:①正确;连接PC,如图所示:
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,∠ABP=∠CBP=45°,
∵PE⊥BC,PF⊥CD,
∴∠PEC=∠FCE=90°,
∴四边形PECF是矩形,
∴PC=EF,
在△ABP和△CBP中,AB=CB?∠ABP=∠CBP?BP=BP?,
∴△ABP≌△CBP(SAS),
∴AP=PC,
∴AP=EF;
②④正确;延长AP交EF于N,如图2所示:
∵AB∥PE,
∴∠EPN=∠BAP,
∵△ABP≌△CBP,
∴∠BAP=∠BCP,
∵四边形PECF是矩形,
∴P、E、C、F四点共圆,
∴∠PFE=∠BCP,
∴∠BAP=∠BCP=∠PFE,
∵∠PEF+∠PFE=90°,
∴∠PEF+∠EPN=90°,
∴∠PNE=90°,
∴AP⊥EF;
③错误;
∵P是动点,
∴△APD不一定是等腰三角形;
正确的结论是①②④,
故选:C.
标签
八年级下册
八年级下
华师大版
浙教版
单选题
初学
数学
矩形的判定与性质
相关试题
如图,在矩形ABCD中,对角线长2,且∠1=∠2=∠3=∠4,则四边形EFGH的周长为( )?
(1999?青岛)如图,在矩形ABCD中,AE⊥BD于E,S矩形=40cm2,S△ABE:S△DBA=1:5,则AE的长为( )?
已知矩形ABCD,当点P在图中的位置时,则有结论( )?
如图,在矩形ABCD中,AC与BD交于点O,若∠DBC=32°,则∠AOB等于( )?
矩形的面积为12cm2,周长为14cm,则它的对角线长为( )?
(2011?绍兴县模拟)如图,已知在矩形ABCD中,AB=4,BC=6,P是线段AD上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E,则BE的取值范围是( )?
第1章 三角形的证明
1.1 等腰三角形
等腰三角形的判定
等腰三角形的性质
第2章 一元一次不等式与一元一次不等式组
2.1 不等关系
角平分线的性质
第3章 图形的平移与旋转
3.1 图形的平移
利用平移设计图案
平移的性质
生活中的平移现象
作图-平移变换
坐标与图形变化-平移
第4章 因式分解
4.1 因式分解
因式分解的意义
第5章 分式与分式方程
5.1 认识分式
分式的定义
分式的基本性质
分式的值
分式的值为零的条件
分式有意义的条件
列代数式(分式)
通分
约分
最简分式
最简公分母
第6章 平行四边形
6.1 平行四边形的性质1
等腰梯形的判定
等腰梯形的性质
平行四边形的判定
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®