试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知⊙O的半径为2,点P到圆心O的距离为,则点P在试题及答案-单选题-云返教育
试题详情
已知⊙O的半径为2,点P到圆心O的距离为
,则点P在
试题解答
A
∵点P到圆心的距离
,小于圆的半径2,
∴点P在圆内.
故选A.
标签
必修2
人教A版
单选题
高中
数学
点与圆的位置关系
相关试题
如图①,在平面直角坐标系中,点A从点(1,0)出发以每秒1个单位长度的速度沿x轴向右运动,在运动过程中,以OA为一边作菱形OABC,使B、C在第一象限,且∠AOC=60°,连接AC、OB;同时点M从原点O出发,以每秒个单位长度的速度沿对角线OB向点B运动,若以点M为圆心,MA的长为半径画圆,设运动时间为t秒.(1)当t=1时,判断点O与⊙M的位置关系,并说明理由.(2)当⊙M与OC边相切时,求t的值.(3)随着t的变化,⊙M和菱形OABC四边的公共点个数也在变化,请直接写出公共点个数与t的大小之间的对应关系.?
已知⊙O的面积为36π,若PO=7,则点P在⊙O .?
已知⊙O的半径为5,当PO 时,点P在⊙O上.?
在平面内,⊙O的半径为5cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是 .?
学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个内角的度数分别为x°、y°和z°,若满足,则称这个三角形为勾股三角形.(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;(3)如图,△ABC内接于⊙O,AB=,AC=1+,BC=2,⊙O的直径BE交AC于点D.①求证:△ABC是勾股三角形;②求DE的长.?
如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为 C??
如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE=?°(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).?
在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2 cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为 D.??
如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,∠B=60°,∠C=70°,则∠BOD的度数是 B.??
已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是 B.??
第1章 立体几何初步
1.1 简单几何体
构成空间几何体的基本元素
棱台的结构特征
棱柱的结构特征
棱锥的结构特征
旋转体(圆柱、圆锥、圆台)
第2章 解析几何初步
2.1 直线与直线的方程
待定系数法求直线方程
点到直线的距离公式
方程组解的个数与两直线的位置关系
过两条直线交点的直线系方程
两点间的距离公式
两条平行直线间的距离
两条直线垂直的判定
两条直线垂直与倾斜角、斜率的关系
两条直线的交点坐标
两条直线平行的判定
确定直线位置的几何要素
三点共线
斜率的计算公式
直线的点斜式方程
直线的截距式方程
直线的两点式方程
直线的倾斜角
直线的图像特征与倾斜角、斜率的关系
直线的斜截式方程
直线的斜率
直线的一般式方程
直线的一般式方程与直线的垂直关系
直线的一般式方程与直线的平行关系
直线的一般式方程与直线的性质
中点坐标公式
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®