试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是试题及答案-单选题-云返教育
试题详情
如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=
BD;③BN+DQ=NQ;④
为定值.其中一定成立的是
试题解答
D
如图:作AU⊥NQ于U,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴由等角对等边知,AM=MN,故①正确.
由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN
∴MP=AH=
AC=
BD,故②正确,
∵∠BAN+∠QAD=∠NAQ=45°,
∴三角形ADQ绕点A顺时针旋转90度至ABR,使AD和AB重合,在连接AN,证明三角形AQN≌ANR,得NR=NQ
则BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ,故③正确.
如图,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW,
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1:
,
∴
=
=
,故④正确.
故选D.
标签
九年级上
九年级下册
浙教版
沪教版
单选题
初三
数学
确定圆的条件
相关试题
下列语句中,正确的有 个.(1)三点确定一个圆 (2)平分弦的直径垂直于弦(3)相等的弦所对的弧相等 (4)相等的圆心角所对的弧相等.?
在下列命题中,属于真命题的是?
如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,-2),则△ABC外接圆的圆心坐标是?
下列命题为真命题的是?
学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个内角的度数分别为x°、y°和z°,若满足,则称这个三角形为勾股三角形.(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;(3)如图,△ABC内接于⊙O,AB=,AC=1+,BC=2,⊙O的直径BE交AC于点D.①求证:△ABC是勾股三角形;②求DE的长.?
如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为 C??
如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE=?°(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).?
在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2 cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为 D.??
如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,∠B=60°,∠C=70°,则∠BOD的度数是 B.??
已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是 B.??
第1章 二次函数
1.1 二次函数
二次函数的定义
第2章 简单事件的概率
2.1 事件的可能性
可能性的大小
第3章 圆的基本性质
3.1 圆
点与圆的位置关系
确定圆的条件
三角形的外接圆与外心
圆的认识
第4章 相似三角形
4.1 比例线段
比例的性质
比例线段
黄金分割
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®