见解析
(1)根据牛顿第二定律,有:F-f-mgsin37°=ma1
而f=μmgcos37°
故所求加速度为a1=10m/s2
(2)设撤去拉力时小物块的速度为v,撤去拉力后小物块加速度和向上运动的距离大小分别为a2、x2,有
a2=gsinθ+μgcosθ=8m/s2
对加速过程,有v2=2a1x1
对减速过程,有v2=2a2x2
解得x2=1.0m
所求重力势能的最大值为Epm=mg(x1+x2)sin37°=5.4J
答:(1)求在拉力F的作用过程中,小物块加速度的大小10m/s2;
(2)若在小物块沿斜面向上运动x1=0.80m时,将拉力F撤去,求整个运动过程中小物块重力势能的最大值为5.4J.