见解析
(1)f′(x)=3x2-a
若f(x)在[1,+∞)上是单调递减函数,
则须y′≤0,即α≥3x2恒成立,
这样的实数a不存在,
故f(x)在[1,+∞)上不可能是单调递减函数;
若f(x)在[1,+∞)]上是单调递增函数,则a≤3x2恒成立,
由于x∈[1,+∞),故3x2≥3,解可得a≤3,
又由a>0,则a的取值范围是0<a≤3;
(2)(反证法)由(1)可知f(x)在[1,+∞)上只能为单调递增函数.
假设f(x)≠x,若1≤x<f(x),则f(x)<f(f(x))=x,矛盾; …(8分)
若1≤f(x)<x,则f(f(x))<f(x),即x<f(x),矛盾,…(10分)
故只有f(x)=x成立.