试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=x2+ax-lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存 在,求出a的值;若不存在,说明理由.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=x
2
+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x
2
,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存 在,求出a的值;若不存在,说明理由.
试题解答
见解析
(1)
在[1,2]上恒成立,
令h(x)=2x
2
+ax-1,
有
得
,
得
(6分)
(2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,
=
(7分)
当a≤0时,g(x)在(0,e]上单调递减,g(x)
min
=g(e)=ae-1=3,
(舍去),
∴g(x)无最小值.
当
时,g(x)在
上单调递减,在
上单调递增
∴
,a=e
2
,满足条件.(11分)
当
时,g(x)在(0,e]上单调递减,g(x)
min
=g(e)=ae-1=3,
(舍去),
∴f(x)无最小值.(13分)
综上,存在实数a=e
2
,使得当x∈(0,e]时g(x)有最小值3.(14分)
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数,若f(a-2)+f(a)>0,则实数a的取值范围是?
设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M?D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的1高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是?
函数f(x)的定义域为D,若存在闭区间[a,b]?D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f(x)的“倍值区间”.下列函数中存在“倍值区间”的有 ①f(x)=x2(x≥0);②f(x)=ex(x∈R);③f(x)=(x≥0);④f(x)=.?
函数上的最大值为 .?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®