试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=x2+2ax+2,x∈[-5,5],(1)当a=1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=x
2
+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
试题解答
见解析
(1)f(x)=x
2
+2ax+2=(x+a)
2
+2-a
2
,
其对称轴为x=-a,当a=1时,f(x)=x
2
+2x+2,
所以当x=-1时,f(x)
min
=f(-1)=1-2+2=1;
当x=5时,即当a=1时,f(x)的最大值是37,最小值是1.(6分)
(2)当区间[-5,5]在对称轴的一侧时,
函数y=f(x)是单调函数.所以-a≤-5或-a≥5,
即a≥5或a≤-5,即实数a的取值范围是(-∞,-5]∪[5,+∞)时,
函数在区间[-5,5]上为单调函数.(12分)
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数,其中m∈R且m≠o.(1)判断函数f1(x)的单调性;(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;(3)设函数当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.试求m的取值范围.?
已知函数,求f(x)在区间[2,5]上的最大值和最小值.?
已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.?
已知函数:f(x)=(a∈R且x≠a).(1)证明:f(x)+f(2a-x)+2=0对定义域内的所有x都成立;(2)当f(x)的定义域为[a+,a+1]时,求证:f(x)的值域为[-3,-2];(3)若a>,函数g(x)=x2+|(x-a) f(x)|,求g(x)的最小值.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®