试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.试题及答案-单选题-云返教育
试题详情
例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.
试题解答
见解析
①∵f(x)是以5为周期的周期函数
∴f(4)=f(4-5)=f(-1)
∵y=f(x)(-1≤x≤1)是奇函数
∴f(1)=-f(-1)=-f(4)
∴f(1)+f(4)=0.
②当x∈[1,4]时,由题意可设f(x)=a(x-2)
2
-5(a>0)
由f(1)+f(4)=0得a(1-2)
2
-5+a(4-2)
2
-5=0
∴a=2
∴f(x)=2(x-2)
2
-5(1≤x≤4)
③∵y=f(x)(-1≤x≤1)是奇函数
∴f(0)=0
∵y=f(x)在[0,1]上是一次函数
∴可设f(x)=kx(0≤x≤1),而f(1)=2(1-2)
2
-5=-3
∴k=-3
∴当0≤x≤1时,f(x)=-3x
从而当-1≤x<0时,f(x)=-f(-x)=-3x
故-1≤x≤1时,f(x)=-3x
∴当4≤x≤6时,有-1≤x-5≤1
∴f(x)=f(x-5)=-3(x-5)=-3x+15
当6<x≤9时,1<x-5≤4,
∴f(x)=f(x-5)=2[(x-5)-2]
2
-5=2(x-7)
2
-5
∴
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是?
已知函数(a≠0)是奇函数,并且函数f(x)的图象经过点(1,3),(1)求实数a,b的值;(2)求函数f(x)的值域?
设函数,则对于任意的实数a和b,a+b<0是f(a)+f(b)<0的?
已知定义在R上的函数y=f(x)满足条件f(x+)=-f(x),且函数y=f(x-)是奇函数,给出以下四个命题:①函数f(x)是周期函数;②函数f(x)的图象关于点(-,0)对称;③函数f(x)是偶函数;④函数f(x)在R上是单调函数.在上述四个命题中,正确命题的序号是 (写出所有正确命题的序号)?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®