试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使得g(x)=f(x)-x|x|在R上是奇函数或是偶函数?若存在,求出a的值,若不存在,请说明理由.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=x
2
+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使得g(x)=f(x)-x|x|在R上是奇函数或是偶函数?若存在,求出a的值,若不存在,请说明理由.
试题解答
见解析
解:(1)当a=-1时,f(x)=x
2
+(x-1)|x+1|,
故有,f(x)=
{
2x
2
-1, x≥-1
1, x<-1
,
当x≥-1时,由f(x)=1,有2x
2
-1=1,解得x=1,或x=-1.
当x<-1时,f(x)=1恒成立,
∴方程的解集为{x|x≤-1或x=1}.
(2)f(x)=
{
2x
2
-(a+1)x+a, x≥a
(a+1)x-a,x<a
,
若f(x)在R上单调递增,
则有
{
a+1
4
≤a
a+1>0
,解得,a≥
1
3
.
∴当a≥
1
3
时,f(x)在R上单调递增.
(3)g(x)=x
2
+(x-1)|x+a|-x|x|,
∵g(1)=0,g(-1)=2-2|a-1|,
若存在实数a,使得g(x)在R上是奇函数或是偶函数,
则必有g(-1)=0,
∴2-2|a-1|=0,∴a=0,或a=2.
①若a=0,则g(x)=x
2
+(x-1)|x|-x|x|=x
2
-|x|,
∴g(-x)=g(x)对x∈R恒成立,∴g(x)为偶函数.
②若a=2,则g(x)=x
2
+(x-1)|x+2|-x|x|,
∴g(2)=4,g(-2)=8,∴g(-2)≠g(2)且g(-2)≠-g(2),
∴g(x)为非奇非偶函数,
∴当a=0时,g(x)为偶函数;当a≠0时,g(x)为非奇非偶函数.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
设函数f(x)的定义域关于原点对称,对定义域内任意的x存在x1和x2,使x=x1-x2,且满足:(1)f(x1-x2)=f(x1)-f(x2)1+f(x1)?f(x2);(2)当0<x<4时,f(x)>0请回答下列问题:(1)判断函数的奇偶性并给出理由;(2)判断f(x)在(0,4)上的单调性并给出理由.?
设a为实数,函数f(x)=x2+|x-a|+1,x∈R.(Ⅰ)若f(x)是偶函数,试求a的值;(Ⅱ)求证:无论a取任何实数,函数f(x)都不可能是奇函数.?
已知f(x)=log2(1+x)+log2(1-x)(I)求函数f(x)的定义域;(II)判断函数f(x)的奇偶性,并加以说明;(III)求f(√22)的值.?
下列函数中,既是奇函数又是增函数的为 .(填序号)①y=x+1;②y=-x3;③y=1x;④y=x|x|.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®