试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=2x+a2x+b为奇函数.(1)求a和b的值;(2)当f(x)定义域不是R时,判断函数f(x)在(0,+∞)内的单调性,并给出证明;(3)当f(x)定义域为R时,求函数f(x)的值域.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=
2
x
+a
2
x
+b
为奇函数.
(1)求a和b的值;
(2)当f(x)定义域不是R时,判断函数f(x)在(0,+∞)内的单调性,并给出证明;
(3)当f(x)定义域为R时,求函数f(x)的值域.
试题解答
见解析
(1)解:由f(x)为奇函数得,f(x)+f(-x)=0,
即
2
x
+a
2
x
+b
+
2
-x
+a
2
-x
+b
=0,化简得(a+b)(2
2x
+2
-x
)+2(ab+1)=0
∴
{
a+b=0
ab+1=0
,解得:
{
a=1
b=-1
或
{
a=-1
b=1
(4分)
(2)由已知得
{
a=1
b=-1
,f(x)=
2
x
+1
2
x
-1
这时,f(x)在(0,+∞)内是减函数.
证明:设x
1
,x
2
∈(0,+∞),且x
1
<x
2
f(x
1
)-f(x
2
)=
2
x
1
+1
2
x
1
-1
-
2
x
2
+1
2
x
2
-1
=
2(2
x
2
-2
x
1
)
(2
x
1
-1)(2
x
2
-1)
,
∵x
1
>0,x
2
>0,x
1
<x
2
∴
2
x
1
-1>0,
2
x
2
-1>0,
2
x
2
-2
x
1
>0
∴f(x
1
)-f(x
2
)>0,即f(x
1
)>f(x
2
)
因此,f(x)在(0,+∞)内是减函数. (4分)
(3)解:由已知得:f(x)=
2
x
-1
2
x
+1
=1-
2
2
x
+1
,
∵2
x
>0,
∴2
x
+1>1,
∴0<
2
2
x
+1
<2,
∴-2<-
2
2
x
+1
<0,
∴-1<f(x)<1
因此,f(x)的值域为(-1,1)(12分)
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
证明:函数f(x)=-2x2+1是偶函数,且在[0,+∞)上是减少的.?
已知函数f(x)=1ax+1+b,(0<a<1,b∈R)是奇函数(1)求实数b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当x∈(0,+∞)时,求函数y=f(x)+af(x)的值域.?
已知函数f(x)=x+4x.(1)判断并证明f(x)的奇偶性(2)判断f(x)在(2,+∞)上的单调性并加???证明;(3)求f(x)单调区间、值域.?
已知y=f(x)是定义在R上奇函数,当x<0时,f(x)=x2+ax,且f(2)=4,(1)求实数a的值;(2)求f(x)的表达式;(3)解不等式f(x2+3)+f(-2x)≥0.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®