试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知f(x)是R上的单调函数,且对任意的实数a∈R,有f(-a)+f(a)=0恒成立,若f(-3)=2(Ⅰ)试判断f(x)在R上???单调性,并说明理由;(Ⅱ)解关于x的不等式:f(m-xx)+f(m)<0,其中m∈R且m>0.试题及答案-单选题-云返教育
试题详情
已知f(x)是R上的单调函数,且对任意的实数a∈R,有f(-a)+f(a)=0恒成立,若f(-3)=2
(Ⅰ)试判断f(x)在R上???单调性,并说明理由;
(Ⅱ)解关于x的不等式:f(
m-x
x
)+f(m)<0,其中m∈R且m>0.
试题解答
见解析
解:(Ⅰ)f(x)为R上的减函数.
理由如下:∵f(-a)+f(a)=0恒成立得f(x)是R上的奇函数,∴f(0)=0,
又因f(x)是R上的单调函数,
由f(-3)=2,f(0)<f(-3),所以f(x)为R上的减函数.
(Ⅱ)由f(
m-x
x
)+f(m)<0,得f(
m-x
x
)<-f(m)=f(-m),
结合(I)得
m-x
x
>-m,整理得
(1-m)x-m
x
<0
当m>1时,{x
| x>0, 或x<
m
1-m
};
当m=1时,{x|x>0};
当0<m<1时,{x
| 0<x<
m
1-m
};
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知定义域为R的函数f(x)=2x-b2x+a是奇函数.(1)求a,b的值;(2)利用定义判断函数y=f(x)的单调性;(3)若对任意t∈[0,1],不等式f(2t2+kt)+f(k-t2)>0恒成立,求实数k的取值范围.?
设函数f(x)=a?2x-11+2x是实数集R上的奇函数.(1)求实数a的值;(2)判断f(x)在R上的单调性并加以证明;(3)求函数f(x)的值域.?
设f(x)=exa+aex是R上的偶函数.(1)求a的值;(2)判断f(x)的单调性;(3)若a>0,当x∈[-ln2,ln2],不等式f(x)-m≥0解集为空集,求实数m的取值范围.?
已知函数f(x)=a?2x-12x+1是奇函数.(1)求实数a的值;(2)判断并证明f(x)的单调性;(3)若对?x∈[0,1],不等式f(x)≤t-x恒成立,求实数t的取值范围.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®