试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知定义在R上的函数f(x)满足:①对任意的实数x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y);②f(1)=2;③f(x)在[0,1]上为增函数.(Ⅰ)求f(0)及f(-1)的值;(Ⅱ)判断函数f(x)的奇偶性,并证明;(Ⅲ)(说明:请在(ⅰ)、(ⅱ)问中选择一问解答即可.)(ⅰ)设a,b,c为周长不超过2的三角形三边的长,求证:f(a),f(b),f(c)也是某个三角形三边的长;(ⅱ)解不等式f(x)>1.试题及答案-单选题-云返教育
试题详情
已知定义在R上的函数f(x)满足:
①对任意的实数x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y);
②f(1)=2;
③f(x)在[0,1]上为增函数.
(Ⅰ)求f(0)及f(-1)的值;
(Ⅱ)判断函数f(x)的奇偶性,并证明;
(Ⅲ)(说明:请在(ⅰ)、(ⅱ)问中选择一问解答即可.)
(ⅰ)设a,b,c为周长不超过2的三角形三边的长,求证:f(a),f(b),f(c)也是某个三角形三边的长;
(ⅱ)解不等式f(x)>1.
试题解答
见解析
解:(Ⅰ)因为对任意的实数x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y),
取x=y=0,得f(1)=f(1)-[f(0)]
2
,解得f(0)=0,
取x=-1,y=1,得f(1)=f(-1)-f(-1)f(1),
又f(1)=2,所以2=f(-1)-2f(-1),解得f(-1)=-2,
所以f(-1)=-2;
(Ⅱ)由(Ⅰ)猜测函数f(x)是奇函数,证明如下:
取x=-1,得f(y)=f(-y)-f(-1)f(y),即f(y)=f(-y)+2f(y),
所以f(-y)=-f(y),即对任意实数y,有f(-y)=-f(y);
所以函数f(x)为奇函数;
(Ⅲ)(i)证明:因为a,b,c为周长不超过2的三角形三边的长度,
所以0<a,b,c<1,不妨设c≥b≥a,由条件③得f(c)≥f(b)≥f(a)>0,
为了证明“f(a),f(b),f(c)也是三角形三边的长”,只需证f(a)+f(b)>f(c),
因为a,b,c为周长不超过2的三角形三边的长度,所以1>
a+b
2
>
c
2
>0,1≥1-
b-a
2
>1-
c
2
>0,
又因为f(x)在[0,1]上为增函数,所以f(
a+b
2
)>f(
c
2
)>0,f(1-
b-a
2
)>f(1-
c
2
)>0,
所以f(a)+f(b)=f(a)-f(-b)=f(1-
b-a
2
)?f(
a+b
2
)>f(1-
c
2
)?f(
c
2
)=f(2-c)-f(2),
在①中取x=0,y=1得f(2)=f(0);取x=0,y=1-c得f(2-c)=f(c);
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数f(x)=log2x-5x+5(Ⅰ)求函数f(x)的定义域;(Ⅱ)若f(a)=4,求a的值;(Ⅲ)判断并证明该函数的单调性.?
已知函数f(x)是区间D?[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A?[0,+∞),则称函数f(x)是区间D上的“偏增函数”.(1)(i) 问函数y=sinx+cosx是否是区间(0,π4)上的“偏增函数”?并说明理由;(ii)证明函数y=sinx是区间(0,π4)上的“偏增函数”.(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D?[0,+∞),使f(x)为D上的“偏增函数”.?
已知函数f(x)=ax2+1bx+c(a,b,c∈R)是奇函数,又f(1)=2,f(2)=52.(1)求a,b,c的值;(2)当x∈(0,+∞)时,讨论函数的单调性,并写出证明过程.?
已知函数f(x)=logax,(a>0且a≠1).(1)若g(x)=f(|x|),当a>1时,解不等式g(1)<g(lgx);(2)若函数h(x)=|f(x-a)|-1,讨论h(x)在区间[2,4]上的最小值.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®