试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知两点,,曲线上的动点满足,直线与曲线交于另一点.(Ⅰ)求曲线的方程;(Ⅱ)设,若,求直线的方程.试题及答案-解答题-云返教育
试题详情
已知两点
,
,曲线
上的动点
满足
,直线
与曲线
交于另一点
.
(Ⅰ)求曲线
的方程;
(Ⅱ)设
,若
,求直线
的方程.
试题解答
见解析
本试题主要是考查了圆锥曲线方程的求解,以及直线与圆锥曲线的位置关系的综合运用。
(1)根据已知中动点与定点的关系式可知该动点的轨迹符合椭圆的定义,则可以利用定义法求解轨迹方程。
(2)设出直线MN方程,与椭圆方程联立,得到韦达定理,结合题目中的三角形的面积比,可知线段的比,然后得到向量的关系式,从而结合坐标得到结论
解:(Ⅰ)因为
,
,所以曲线
是以
,
为焦点,长轴长为
的椭圆.曲线
的方程为
. ……4分
(Ⅱ)显然直线
不垂直于
轴,也不与
轴重合或平行. ……5分
设
,直线
方程为
,其中
.
由
得
.解得
或
.
依题意
,
. ……7分
因为
,所以
,则
.
于是
所以
……9分
因为点
在椭圆上,所以
.
整理得
,解得
或
(舍去),从而
.
所以直线
的方程为
.
标签
选修1-1
人教A版
解答题
高中
数学
椭圆的定义
相关试题
设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足,则椭圆的离心率的取值范围是?
椭圆两焦点为,,P在椭圆上,若 △的面积的最大值为12,则椭圆方程为?
已知、、是椭圆上的三个动点,若右焦点是的重心,则的值是?
已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于?
椭圆x24+y23=1上有n个不同的点P1,P2,P3,…,Pn,椭圆的右焦点F,数列{|PnF|}是公差大于1100的等差数列,则n的最大值为( )?
椭圆的焦点坐标是 .?
椭圆的焦点坐标是 .?
已知F1,F2是椭圆的两个焦点,过F1且???椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是( )?
椭圆两焦点为,,P在椭圆上,若 △的面积的最大值为12,则椭圆方程为?
已知、、是椭圆上的三个动点,若右焦点是的重心,则的值是?
第1章 常用逻辑用语
1.1 命题
复合命题
复合命题的真假
命题的否定
命题的真假判断与应用
四种命题
四种命题间的逆否关系
四种命题间的真假关系
第2章 圆锥曲线与方程
2.1 椭圆
椭圆的标准方程
椭圆的定义
椭圆的简单性质
椭圆的应用
圆锥曲线的实际背景及作用
第3章 变化率与导数
3.1 变化的快慢与变化率
变化的快慢与变化率
第4章 导数应用
4.1 函数的单调性与极值
函数的单调性与导数的关系
函数在某点取得极值的条件
利用导数研究函数的单调性
利用导数研究函数的极值
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®