• 三内角为A、B、C,已知OM=(sinB+cosB,cosC),ON=(sinC,sinB-cosB),OM?ON=-15.(1)求tan2A的值;(2)求2cos2A2-3sinA-1√2sin(A+π4).试题及答案-解答题-云返教育

    • 试题详情

      三内角为A、B、C,已知
      OM
      =(sinB+cosB,cosC),
      ON
      =(sinC,sinB-cosB),
      OM
      ?
      ON
      =-
      1
      5

      (1)求tan2A的值;
      (2)求
      2cos2
      A
      2
      -3sinA-1
      2
      sin(A+
      π
      4
      )

      试题解答


      见解析
      解:(1)
      OM
      ?
      ON
      =(sinB+cosB)(sinC)+(cosC)(sinB-cosB)
      =sinBsinB+cosBsinC+cosCsinB-cosCcosB
      =-cosCcosB+sinBsinB+cosBsinC+cosCsinB
      =-cos(B+C)+sin(B+C)=-
      1
      5

      又[sin(B+C)]
      2+[cos(B+c)]2=1
      解得sin(B+C)=
      3
      5
      cos(B+C)=
      4
      5

      sinA=sin(180-A)=sin(B+C)=
      3
      5

      cosA=-cos(180-A)=-cos(B+C)=-
      4
      5

      tanA═-
      3
      4

      tan2A=
      2tanA
      1-tan2A
      =-
      24
      7

      (2)原式=
      cosA-3sinA
      sinA+cosA
      =
      -
      4
      5
      -3×
      3
      5
      3
      5
      -
      4
      5
      =13.
    MBTS ©2010-2016 edu.why8.cn