• 设A,B,C,D为平面内的四点,且A(1,3),B(2,-2),C(4,1).(1)若AB=CD,求D点的坐标;(2)设向量a=AB,b=BC,若ka-b与a+3b平行,求实数k的值.试题及答案-解答题-云返教育

    • 试题详情

      设A,B,C,D为平面内的四点,且A(1,3),B(2,-2),C(4,1).
      (1)若
      AB
      =
      CD
      ,求D点的坐标;
      (2)设向量
      a
      =
      AB
      b
      =
      BC
      ,若k
      a
      -
      b
      a
      +3
      b
      平行,求实数k的值.

      试题解答


      见解析
      解:(1)设D(x,y).∵
      AB
      =
      CD

      ∴(2,-2)-(1,3)=(x,y)-(4,1),
      化为(1,-5)=(x-4,y-1),
      {
      x-4=1
      y-1=-5
      ,解得
      {
      x=5
      y=-4

      ∴D(5,-4).
      (2)∵
      a
      =
      AB
      =(1,-5),
      b
      =
      BC
      =(4,1)-(2,-2)=(2,3).
      ∴k
      a
      -
      b
      =k(1,-5)-(2,3)=(k-2,-5k-3),
      a
      +3
      b
      =(1,-5)+3(2,3)=(7,4).
      ∵k
      a
      -
      b
      a
      +3
      b
      平行,
      ∴7(-5k-3)-4(k-2)=0,解得k=-
      1
      3

      ∴k=-
      1
      3
    MBTS ©2010-2016 edu.why8.cn