• 在?ABCD中,A(1,1),AB=(6,0),点M是线段AB的中点,线段CM与BD交于点P.(1)若AD=(3,5),求点C的坐标;(2)当|AB|=|AD|时,求点P的轨迹.试题及答案-解答题-云返教育

    • 试题详情

      在?ABCD中,A(1,1),
      AB
      =(6,0),点M是线段AB的中点,线段CM与BD交于点P.
      (1)若
      AD
      =(3,5),求点C的坐标;
      (2)当|
      AB
      |=|
      AD
      |时,求点P的轨迹.

      试题解答


      见解析
      解:(1)设点C的坐标为(x0,y0),
      AC
      =
      AD
      +
      AB
      =(3,5)+(6,0)=(9,5),
      即(x
      0-1,y0-1)=(9,5),
      ∴x
      0=10,y0=6,即点C(10,6).
      (2)设P(x,y),则
      BP
      =
      AP
      -
      AB

      =(x-1,y-1)-(6,0)
      =(x-7,y-1),
      AC
      =
      AM
      +
      MC
      =
      1
      2
      AB
      +3
      MP

      =
      1
      2
      AB
      +3(
      AP
      -
      1
      2
      AB
      )=3
      AP
      -
      AB

      =(3(x-1),3(y-1))-(6,0)
      =(3x-9,3y-3).
      ∵|
      AB
      |=|
      AD
      |,∴?ABCD为菱形,∴
      BP
      AC

      ∴(x-7,y-1)?(3x-9,3y-3)=0,
      即(x-7)(3x-9)+(y-1)(3y-3)=0.
      ∴x
      2+y2-10x-2y+22=0(y≠1).
      即(x-5)
      2+(y-1)2=4(y≠1).
      故点P的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y=1的两个交点.
    MBTS ©2010-2016 edu.why8.cn