试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
(2010?徐汇区一模)各项均为正数的数列{an}的前n项和为Sn,满足2(Sn+1)=an2+an(n∈N*).(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=2,bn+1=2bn(n∈N*),数列{cn}满足cn={an,n=2k-1bn,n=2k(k∈N*),数列{cn}的前n项和为Tn,当n为偶数时,求Tn;(3)若数列Pn=43?(2n-1)(n∈N*),甲同学利用第(2)问中的Tn,试图确定Tn-Pn的值是否可以等于20?为此,他设计了一个程序(如图),但乙同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束),你是否同意乙同学的观点?请说明理由.试题及答案-解答题-云返教育
试题详情
(2010?徐汇区一模)各项均为正数的数列{a
n
}的前n项和为S
n
,满足2(S
n
+1)=a
n
2
+a
n
(n∈N
*
).
(1)求数列{a
n
}的通项公式;
(2)若数列{b
n
}满足b
1
=2,b
n+1
=2b
n
(n∈N
*
),数列{c
n
}满足
c
n
=
{
a
n
,n=2k-1
b
n
,n=2k
(k∈N
*
),数列{c
n
}的前n项和为T
n
,当n为偶数时,求T
n
;
(3)若数列
P
n
=
4
3
?(2
n
-1)(n∈N
*
),甲同学利用第(2)问中的T
n
,试图确定T
n
-P
n
的值是否可以等于20?为此,他设计了一个程序(如图),但乙同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束),你是否同意乙同学的观点?请说明理由.
试题解答
见解析
解:(1)n=1,2(S
1
+1)=a
1
2
+a
1
?a
1
=2.(2分)
n≥2,2(S
n
+1)=
a
n
2
+a
n
2(S
n-1
+1)=
a
n-1
2
+a
n-1
,
两式相减,得2a
n
=a
n
2
-a
n-1
2
+a
n
-a
n-1
∵a
n
>0,∴a
n
-a
n-1
=1.(4分)
?{a
n
}为等差数列,首项为2,公差为1
∴a
n
=n+1(n∈N
*
).(5分)
(2)∵{b
n
}是首项为2,公比为2的等比数列,
∴b
n
=2
n
(n∈N
*
).(7分)
n为偶数时,T
n
=(a
1
+a
3
+…+a
n-1
)+(b
2
+b
4
+…+b
n
).(8分)
=
(a
1
+a
n-1
)?
n
2
2
+
4(1-4
n
2
)
1-4
=
n
2
+2n
4
+
4
3
(2
n
-1).(10分)
(3)由程序可知,n为偶数,
∴T
n
=
n
2
+2n
4
+
4
3
(2
n
-1),
P
n
=
4
3
(2
n
-1)
设d
n
=A-B=T
n
-P
n
=
n
2
+2n
4
.(13分)
∵n=8时,
n
2
+2n
4
=20,且n为偶数
∴n=8时,T
n
-P
n
=20成立,程序停止.(14分)
∴乙同学的观点错误.(16分)
标签
必修5
人教B版
解答题
高中
数学
数列递推式
相关试题
已知各项均不为零的数列{an}的前n项和为Sn,a1=1且Sn=12anan+1(n∈N*).(I)求数列{an}的通项公式;(II)求证:对任意n∈N*,12≤1a1-1a2+1a3-1a4+1a5-1a6+…+1a2n-1-1a2n<√22.?
(2011?肇庆一模)将数列{an}中的所有项按每一行比上一行多一项的规则排成如下表:记表中的第一列数a1,a2,a4,a7,…,构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足2bnbnSn-S2n=1(n≥2).(1)求证数列{1Sn}成等差数列,并求数列{bn}的通项公式;(2)上表中,若a81项所在行的数按从左到右的顺序构成等比数列,且公比q为正数,求当a81=-491时,公比q的值.?
在数列{an}中,a1=1,an+1=(1+1n) an+n+122(n∈N*)(Ⅰ)若bn=ann,试求数列{bn}的通项公式;(Ⅱ)设数列{an}的前n项和为Sn,试求Sn.?
已知数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N*)(1)求数列{an}的通项公式;(2)若bn=(2n+1)an+2n+1,数列{bn}的前n项和为Tn,求Tn.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 数列
1.1 数列
数列的概念及简单表示法
数列的函数特性
第2章 解三角形
2.1 正弦定理与余弦定理
余弦定理
余弦定理的应用
正弦定理
正弦定理的应用
第3章 不等式
3.1 不等关系
不等关系与不等式
不等式比较大小
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®