试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
求函数f(x)=ax+b在区间[m,n]上的平均变化率.试题及答案-解答题-云返教育
试题详情
求函数f(x)=ax+b在区间[m,n]上的平均变化率.
试题解答
见解析
函数f(x)=ax+b在区间[m,n]上的平均变化率=
=
=a.
故其平均变化率为a.
标签
选修1-1
人教A版
解答题
高中
数学
变化的快慢与变化率
相关试题
图中三条曲线给出了三个函数的图象,一条表示汽车位移函数s(t),一条表示汽车速度函数v(t),一条是汽车加速度函数a(t),则?
函数f(x)=cosx (x∈R)的图象按向量(m,0)平移后,得到函数y=-f′(x)的图象,则m的值可以为?
已知函数y=f(x)在(0,1)内的一段图象是如图所示的一段圆弧,若0<x1<x2<1,则?
某生物生长过程中,在三个连续时段内的增长量都相等,在各时段内平均增长速度分别为v1,v2,v3,该生物在所讨论的整个时段内的平均增长速度为?
已知函数在点处取得极值。(1)求的值;(2)若有极大值28,求在上的最小值。?
(本题9分)设函数。(1)求的值;(2)求的最小值及取最小值时的集合;(3)求的单调递增区间。?
已知f′(x)是函数f(x)=12x2+x2n(n∈N*)的导函数,数列{an}满足a1=1,an+1=f′(an).(1)求数列{an}的通项公式;(2)若bn=(2n-1)(2-an),Sn为数列{bn}前n项和,求Sn.?
已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=?
.计算:.?
曲线在点处的切线为?
第1章 常用逻辑用语
1.1 命题
复合命题
复合命题的真假
命题的否定
命题的真假判断与应用
四种命题
四种命题间的逆否关系
四种命题间的真假关系
第2章 圆锥曲线与方程
2.1 椭圆
椭圆的标准方程
椭圆的定义
椭圆的简单性质
椭圆的应用
圆锥曲线的实际背景及作用
第3章 变化率与导数
3.1 变化的快慢与变化率
变化的快慢与变化率
第4章 导数应用
4.1 函数的单调性与极值
函数的单调性与导数的关系
函数在某点取得极值的条件
利用导数研究函数的单调性
利用导数研究函数的极值
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®