试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知a是不为零的常数,二次函数g(x)=ax2-x的定义域为R,函数y=g(x-4)为偶函数.函数f(x)=ax2+x的定义域为[m,n](m<n).(1)求a的值;(2)当m=0、n=12时,求函数f(x)的值域;(3)是否存在实数m、n,使函数f(x)的值域为[3m,3n]?如果存在,求出m、n的值;如果不存在,请说明理由.试题及答案-单选题-云返教育
试题详情
已知a是不为零的常数,二次函数g(x)=ax
2
-x的定义域为R,函数y=g(x-4)为偶函数.函数f(x)=ax
2
+x的定义域为[m,n](m<n).
(1)求a的值;
(2)当m=0、n=12时,求函数f(x)的值域;
(3)是否存在实数m、n,使函数f(x)的值域为[3m,3n]?如果存在,求出m、n的值;如果不存在,请说明理由.
试题解答
见解析
解:(1)由于g(x-4)=a(x-4)
2
-(x-4)=ax
2
-(8a+1)x+16a+4,
由y=g(x-4)为偶函数,
则二次函数的一次项系数为0,知-(8a+1)=0,
∴a=-
1
8
.
(2)f(x)=-
1
8
x
2
+x=-
1
8
(x-4)
2
+2,对称轴为直线x=4.
当m=0、n=12时,定义域为[0,12].
在[0,4]上f(x)递增,此时函数值的集合为[f(0),f(4)],即[0,2];
在[4,12]上f(x)递减,此时函数值的集合为[f(12),f(4)],即[-6,2];
所以,当m=0、n=12时,函数f(x)的值域为[-6,2].
(3)存在实数m、n,使函数f(x)的值域为[3m,3n].讨论如下:
①当n≤4时,函数f(x)在[m,n]递增,则函数值域为[f(m),f(n)],
则
{
f(m)=-
1
8
m
2
+m=3m
f(n)=-
1
8
n
2
+n=3n
,
即m、n是方程-
1
8
x
2
+x=3x的两根,而方程-
1
8
x
2
+x=3x的两根是0、-16,
所以由m<n,得,m=-16、n=0.
②当n>4时,
若m≤4,函数的最大值为f(4)=2=3n,则n=
2
3
,相互矛盾.
若m>4,函数f(x)在[m,n]递减,则函数值域为[f(n),f(m)],
故
{
f(m)=-
1
8
n
2
+n=3m
f(n)=-
1
8
m
2
+m=3n
.
两式相减后,变形得(m-n)(m+n-32)=0,而m-n<0,
所以,m+n-32=0,即n=32-m,
代入-
1
8
m
2
+m=3n得m
2
-32m+768=0,此方程无实解,此时不存在m、n.
综上所述,存在实数m=-16、n=0,使函数f(x)的值域为[3m,3n].
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数f(x)=32x2+2ax-a2lnx,二次函数g(x)=ax2-2x+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若-(a12+a22)=a1a23+a2a13-2a12a22=a1a2(a1-a2)2与g(x)在区间(a,a+2)内均为单调函数,求实数a的取值范围.?
已知抛物线y=ax2+bx+c经过A、B、C三点,当x≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+c,当x<0时的图象.?
已知f(x)=x2+2(a-1)x+2在(-∞,-4)上是减函数,且f(x)>0,求a的取值范围.?
已知函数 f(x)=x2-2|x|-1,试判断函数f(x)的奇偶性,并作出函数的图象.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®