试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
对于二次函数f(x)=-4x2+8x-3(1)求函数f(x)图象的开口方向、f(x)的对称轴方程、顶点坐标,函数的值域;(2)求函数f(x)的零点;(3)求函数f(x)的单调区间,以及在每一单调区间上,它是增函数还是减函数.试题及答案-单选题-云返教育
试题详情
对于二次函数f(x)=-4x
2
+8x-3
(1)求函数f(x)图象的开口方向、f(x)的对称轴方程、顶点坐标,函数的值域;
(2)求函数f(x)的零点;
(3)求函数f(x)的单调区间,以及在每一单调区间上,它是增函数还是减函数.
试题解答
见解析
解:(1)由于f(x)=-4x
2
+8x-3,a=-4,b=8,c=-3
则函数图象开口向下,对称轴方程为x=-
b
2a
=1,顶点坐标(1,1),值域{y|y≤1};
(2)令f(x)=-4x
2
+8x-3=0,分解因式(2x-1)(2x-3)=0,或用求根公式得x=
1
2
或x=
3
2
,
即所求的两个零点为x=
1
2
或x=
3
2
;
(3)f(x)=-4x
2
+8x-3的单调区间为(-∞,1)和[1,+∞)
f(x)在(-∞,1)是增函数,f(x)在[1,+∞)上是减函数.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.(1)证明:|c|≤1;(2)证明:当-1≤x≤1时,|g(x)|≤2;(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x).?
已知函数f(x)=x2+bx+c(其中b,c为实常数).(Ⅰ)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为-1,求函数y=f(x)的解析式;(Ⅱ)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0]?若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.?
已知函数f(x)=x2+(m-1)x-m(1)若m=2,解不等式f(x)<0;(2)若不等式f(x)≥-1的解集为R,求实数m的取值范围.?
已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,设集合M={m|?x∈R,f(x)与g(x)的值中至少有一个为正数}.(Ⅰ)试判断实数0是否在集合M中,并给出理由;(Ⅱ)求集合M.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®