试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:fn(x)在区间(12,1)内存在唯一的零点;(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;(3)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.试题及答案-单选题-云返教育
试题详情
设函数
f
n
(x)=x
n
+bx+c(n∈N
+
,b,c∈R)
(1)设n≥2,b=1,c=-1,证明:f
n
(x)在区间(
1
2
,1)内存在唯一的零点;
(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)设n=2,若对任意x
1
,x
2
∈[-1,1],有|f
2
(x
1
)-f
2
(x
2
)|≤4,求b的取值范围.
试题解答
见解析
解:(1)当b=1,c=-1,n≥2时,f(x)=x
n
+x-1
∵f(
1
2
)f(1)=(
1
2
n
-
1
2
)×1<0,∴f(x)在区间(
1
2
,1)内存在零点,
又当x∈(
1
2
,1)时,f′(x)=nx
n-1
+1>0,
∴f(x)在(
1
2
,1)上单调递增,∴f(x)在区间(
1
2
,1)内存在唯一的零点;
(2)解法一 由题意知
{
-1≤f(-1)≤1
-1≤f(1)≤1
,即
{
0≤b-c≤2
-2≤b+c≤0
由图象知b+3c在点(0,-2)取到最小值-6,在点(0,0)处取到最大值0,
∴b+3c的最小值为-6,最大值为0;
解法二 由题意知
-1≤f(1)=1+b+c≤1,即-2≤b+c≤0,①
-1≤f(-1)=1-b+c≤1,即-2≤-b+c≤0,②
①×2+②得:-6≤2(b+c)+(-b+c)=b+3c≤0,
当b=0,c=-2时,b+3c=-6;当b=c=0,时,b+3c=0;
∴b+3c的最小值为-6,最大值为0;
解法三 由题意知
{
f(-1)=1-b+c
f(1)=1+b+c
,解得b=
f(1)-f(-1)
2
,c=
f(1)+f(-1)+2
2
,
∴b+3c=2f(1)+f(-1)-3,
∵-1≤f(-1)≤1,-1≤f(1)≤1,
∴-6≤b+3c≤0,
当b=0,c=-2时,b+3c=-6;当b=c=0,时,b+3c=0;
∴b+3c的最小值为-6,最大值为0;
(3)当n=2时,f(x)=x
2
+bx+c,对任意x
1
,x
2
∈[-1,1],有|f
2
(x
1
)-f
2
(x
2
)|≤4,等价于在[-1,1]上最大值与最小值之差M≤4,据此分类讨论如下:
(i)当|
b
2
|>1,即|b|>2,M=|f(1)-f(-1)|=2|b|>4,与题设矛盾;
(ii)当-1≤-
b
2
<0,即0<b≤2时,M=f(1)-f(-
b
2
)=
(
b
2
+1)
2
≤4恒成立,
(iii)当0≤-
b
2
≤1,即-2≤b≤0时,M=f(-1)-f(-
b
2
)=
(
b
2
-1)
2
≤4恒成立,
综上所述,-2≤b≤2.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
选修4-5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若|f(x)-2f(x2)|≤k恒成立,求k的取值范围.?
设0≤α≤π,不等式8x2-(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为 .?
设函数f(x)=x2-1,对任意x∈[32,+∞),f(xm)-4m2f(x)≤f(x-1)+4f(m)恒成立,则实数m的取值范围是 .?
设函数f(x)=x-1x,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是 .?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®