见解析
解:(1)∵f(x)=x2,∴f′(x)=2x,∴f′(1)=2,∴y=f(x)在点(1,f(1))处的切线方程为y-1=2(x-1),即2x-y-1=0;
(2)由题意得g(x)=λx+sinx,所以g'(x)=λ+cosx,
因g(x)在[-1,1]上单调递减,所以g'(x)≤0在[-1,1]上恒成立,
即λ≤-cosx在[-1,1]上恒成立,得λ≤-1.(3分)
因g(x)在[-1,1]上单调递减,所以[g(x)]max=g(-1)=-λ-sin1,
又g(x)≤λ+3sin1在x∈[-1,1]上恒成立,故只需-λ-sin1≤λ+3sin1恒成立
所以λ≥-2sin1,又sin30°<sin1,所以1<2sin1,故-2sin1≤λ≤-1