试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知定义在R上的函数f(x)满足f(x+1)=-f(x).当x∈[0,1]时,f(x)=12-x,若g(x)=f(x)-m(x+1)在区间(-1,2]有3个零点,则实数m的取值范围是( )试题及答案-单选题-云返教育
试题详情
已知定义在R上的函数f(x)满足f(x+1)=-f(x).当x∈[0,1]时,f(x)=
1
2
-x,若g(x)=f(x)-m(x+1)在区间(-1,2]有3个零点,则实数m的取值范围是( )
试题解答
B
解:设得x+1∈[0,1],此时f(x+1)=
1
2
-(x+1)=-x-
1
2
∵函数f(x)满足f(x+1)=-f(x)
∴当-1≤x≤0时,f(x)=x+
1
2
.
又∵f(x+2)=-f(x+1)═-[f(-x)]=f(x)
∴f(x)是以2为周期的函数,可得当1≤x≤2时,f(x)=f(x-2)=x-
3
2
.
综上所述,得f(x)区间(-1,2]上的表达式为f(x)=
{
x+
1
2
x∈(-1,0]
1
2
-x x∈(0,1]
x-
3
2
x∈(1,2]
为了研究g(x)=f(x)-m(x+1)在区间(-1,2]上的零点,将其变形为
f(x)=m(x+1),在同一坐标系内作出y=f(x)和y=m(x+1)的图象,
如右图所示,y=f(x)图象是三条线段构成的折线,y=m(x+1)的图象是直线
因为直线y=m(x+1)经过定点A(-1,0),所以由图象可得当直线y=m(x+1)
位于图中AB、AC之间(包括AC)活动时,两个图象有三个公共点,相应地
g(x)=f(x)-m(x+1)在区间(-1,2]也有3个零点
∵B(1,-0.5),C(2,0.5),
∴k
AB
=
-0.5-0
1-(-1)
=-
1
4
,k
AC
=
0.5-0
2-(-1)
=
1
6
而直线y=m(x+1)的斜率为m,它在AB、AC之间(包括AC)活动时,m(-
1
4
,
1
6
].
因此,使得g(x)=f(x)-m(x+1)在区间(-1,2]有3个零点的m取值范围为(-
1
4
,
1
6
]
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
函数f(x)为定义在R上的偶函数,且满足f(x+1)+f(x)=1,当x∈[1,2]时,f(x)=2-x,则f(-2013)=( )?
已知函数y=f(x)是R上的奇函数,且f(x+4)=f(x),f(3)=8,则f(24)=( )?
设f(x)=x2-bx+c对一切x∈R恒有f(1+x)=f(1-x)成立,f(0)=3,则当x<0时f(bx)与f(cx)的大小关系是( )?
下列是定义在R上的四个函数图象的一部分,其中不是周期函数的是( )?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®