• 已知f1(x)=x-1x+1,对任意n∈N*,恒有fn+1(x)=f1[fn(x)],则f2014(2013)=( )试题及答案-单选题-云返教育

    • 试题详情

      已知f1(x)=
      x-1
      x+1
      ,对任意n∈N*,恒有fn+1(x)=f1[fn(x)],则f2014(2013)=(  )

      试题解答


      D
      解:已知f1(x)=
      x-1
      x+1
      ,对任意n∈N*,恒有fn+1(x)=f1[fn(x)],则f2(x)=f1[f1(x)]=
      f1(x)-1
      f1(x)+1
      =
      x-1
      x+1
      -1
      x-1
      x+1
      +1
      =
      -1
      x

      f
      3(x)=f1[f2(x)]=
      f2(x)-1
      f2(x)+1
      =
      -1
      x
      -1
      -1
      x
      +1
      =
      1+x
      1-x
      ,f4(x)=f1[f3(x)]=
      f3(x)-1
      f3(x)+1
      =
      x+1
      1-x
      -1
      x+1
      1-x
      +1
      =x,
      f
      5=f1[f4(x)]=
      f4(x)-1
      f4(x)+1
      =
      x-1
      x+1
      =f1(x),故fn(x)是以4为周期的周期函数,
      故f
      2014(2013)=f2(2013)=
      -1
      2013

      故选D.
    MBTS ©2010-2016 edu.why8.cn