见解析
(1)证明:设x∈R,t>0,x+t>x,则
f(x+t)-f(x)=f(x)+f(t)-f(x)=f(t)
∵t>0,∴f(t)<0,f(x+t)<f(x)
∴f(x)在R上是减函数
(2)解:由(1)知f(x)在R上是减函数
∴f(x)在[-2,2]上单调递减,
令x=y=0,则f(0)+f(0)=f(0+0),∴f(0)=0
令y=-x,则f(x)+f(-x)=f(x-x),∴f(-x)=-f(x)
∴f(x)是奇函数
∴f(x)min=f(2)=f(1)+f(1)=-1,f(x)max=f(-2)=-f(2)=1