试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
对于任意定义在R上的函数f(x),若存在x0∈R满足f(x0)=x0,则称x0是函数f(x)的一个不动点.若函数f(x)=x2+ax+1没有不动点,则实数a的取值范围是 .试题及答案-单选题-云返教育
试题详情
对于任意定义在R上的函数f(x),若存在x
0
∈R满足f(x
0
)=x
0
,则称x
0
是函数f(x)的一个不动点.若函数f(x)=x
2
+ax+1没有不动点,则实数a的取值范围是
.
试题解答
(-1,3)
解:根据题意,得x=x
2
+ax+1无实数根,
即x
2
+(a-1)x+1=0无实数根,
∴△=(a-1)
2
-4<0,
解得:-1<a<3;
故答案为:(-1,3)
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数f(x)的定义域为R,对任意s,t∈R都有f(s+t)=f(s)+f(t),且对任意x>0,都有f(x)<0,且已知f(3)=-3.(1)求证:f(x)是R上的单调递减函数;(2)求证:f(x)是奇函数;(3)求f(x)在[m,n](m,n∈Z且m>0)上的值域.?
若定义在R上的函数f(x)满足:①对任意x,y∈R,都有f(x+y)=f(x)+f(y)+1;②当x<0时,f(x)>-1.(1)试判断函数f(x)+1的奇偶性;(2)试判断函数f(x)的单调性;(3)若不等式f(a2+a-5)+32>0的解集为{a|-3<a<2},求f(4)的值.?
已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值.(2)求f(x)的解析式.(3)已知a∈R,设P:当0<x<12时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集).?
已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).(1)求f(1),f(-1)的值;(2)求证:y=f(x)为偶函数;(3)若y=f(x)在(0,+∞)上是增函数,解不等式f(16x)+f(x-5)≤0.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®