试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)定义在R上,并且对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,且x≠y时,f(x)≠f(y),x>0时,有f(x)>0.(1)判断f(x)的奇偶性;(2)若f(1)=1,解关于x的不等式f(x)-f(1x-1)≥2.试题及答案-单选题-云返教育
试题详情
已知函数f(x)定义在R上,并且对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,且x≠y时,f(x)≠f(y),x>0时,有f(x)>0.
(1)判断f(x)的奇偶性;
(2)若f(1)=1,解关于x的不等式f(x)-f(
1
x-1
)≥2.
试题解答
见解析
解:(1)对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,
不妨设x=y=0,则f(0)=0,
令y=-x得,f(x-x)=f(x)+f(-x)
?f(x)+f(-x)=0
?f(-x)=-f(x),
故f(x)是奇函数;
(2)∵f(1)=1,f(x+y)=f(x)+f(y)
∴f(1)+f(1)=f(1+1)=f(2)=2,
不等式化为f(x)>f(
1
x-1
)+2?f(x)>f(
1
x-1
)+f(2)?f(x)>f(
1
x-1
+2)(*)
∵当x≠y时,f(x)≠f(y),
x>0时,有f(x)>0,
设x
2
>x
1
>0则:f(x
1
+x
2
)=f(x
1
)+f(x
2
)
∴f(x
2
)-f(x
1
)=f(x
2
)+f(x
2
)-f(x
1
+x
2
)=f(2x
2
)+f(-x
1
-x
2
)=f(x
2
-x
1
),又x
2
-x
1
>0,
∴f(x
2
-x
1
)>0
即f(x
2
)-f(x
1
)>0?f(x
2
)>f(x
1
),
故f(x)在(0,+∞)上递增,由f(x)为奇函数,
∴x<0时必有f(x)<0,加之f(0)=0,
于是f(x)在R上为增函数.
根据(*)式不等式化为:x>
1
x-1
+2?(x-1)(x
2
-3x+1)>0,
利用穿针线法得:
不等式的解集为:{x|
3-
√
5
2
<x<1或x>
3+
√
5
2
}.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
设函数f(x)表示实数x与x的给定区间内整数之差绝对值的最小值.(1)当x∈[-12,12]时,求出f(x)的解析式,当x∈[k-12,k+12](k∈Z)时,写出用绝对值符号表示的f(x)的解析式;(2)证明函数f(x)是偶函数(x∈R);(3)若e-12<a<1,求证方程f(x)-loga√x=0有且只有一个实根,并求出这个实根.?
已知函数f(x)=x2+kx(x≠0, k为常数),(1)若k=-1,求证:f(x)在(0,+∞)上是增函数;(2)讨论函数f(x)的奇偶性,并加以证明.?
判断函数y=lg(x+√x2+1)的奇偶性??
f(x)是定义域在R上的函数,已知:f(x+y)=f(x)+f(y)对于任意x,y∈R都成立.(1)求f(0)的值;(2)求证:判断f(x)的奇偶性并证明你的结论.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®