试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=4x+12ax(a∈R)是偶函数,g(x)=t?2x+4,(1)求a的值;(2)当t=-2时,求f(x)<g(x)的解集;(3)若函数f(x)的图象总在g(x)的图象上方,求实数t的取值范围.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=
4
x
+1
2
ax
(a∈R)是偶函数,g(x)=t?2
x
+4,
(1)求a的值;
(2)当t=-2时,求f(x)<g(x)的解集;
(3)若函数f(x)的图象总在g(x)的图象上方,求实数t的取值范围.
试题解答
见解析
解:(1)由f(x)是偶函数,得f(x)=f(-x),即
4
x
+1
2
ax
=
4
-x
+1
2
-ax
,
化简得2
2ax
=4
x
,故a=1;
(2)f(x)<g(x)即
4
x
+1
2
x
<-2?2
x
+4,亦即3?4
x
-4?2
x
+1<0,
所以
1
3
<2
x
<1,即log
2
1
3
<x<0,
所以不等式f(x)<g(x)的解集为{x|log
2
1
3
<x<0};
(3)因为函数f(x)的图象总在g(x)的图象上方,
所以f(x)>g(x),即
4
x
+1
2
x
>t?2
x
+4,得t<
1
4
x
-
4
2
x
+1,
∵
1
4
x
-
4
2
x
+1=(
1
2
x
-2)
2
-3≥-3,∴t<-3;
故实数t的取值范围为:t<-3.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知a>0,≠1,f(logax)=aa2-1(x-1x).(1)求函数f(x)的表达式,并写出函数f(x)的定义域;(2)判断f(x)的单调性,并给出证明;(3)若不等式f(x2)+f(kx+1)≤0对实数x∈(1,2)恒成立,求实数k的取值范围.?
已知f(x)=log22x-2log2x+4,x∈[√2,8](1)设t=log2x,x∈[√2,8],求t的最大值与最小值;(2)求f(x)的最大值与最小值.?
已知函数f(x)=2x-1mx+1(x∈R),且f(3)=79.(1)判断函数y=f(x)在R上的单调性,并用定义法证明;(2)若f(1x-1)≥f(2),求x的取值范围.?
求函数y=(14)x-(12)x+1在x∈[-3,2]上的值域.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®