试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=mx+n,f(2)=3,f(-1)=0,(1)求m,n的值;(2)证明f(x)在(0,+∞)上是减函数.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=
m
x
+n,f(2)=3,f(-1)=0,
(1)求m,n的值;
(2)证明f(x)在(0,+∞)上是减函数.
试题解答
见解析
解:(1)根据题意,
{
f(2)=
m
2
+n=3
f(-1)=-m+n=0
,解得m=n=2,
(2)根据(1)知道,f(x)=
x
2
+2,
设x
1
,x
2
∈(0,+∞),x
1
<x
2
,
f(x
1
)-f(x
2
)=
2
x
1
-
2
x
2
=
2(x
2
-x
1
)
x
1
x
2
∵x
1
<x
2
,
∴x
2
-x
1
>0,
∴f(x
1
)-f(x
2
)>0,
∴函数f(x)在(0,+∞)上是减函数.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数y=f(x),x∈R满足f(x)=af(x-1),a是不为0的实常数.(1)若当0≤x≤1时,f(x)=x(1-x),求函数y=f(x),x∈[0,1]的值域;(2)若当0≤x<1时,f(x)=x(1-x),求函数y=f(x),x∈[n,n+1),n∈N的解析式;(3)若当0<x≤1时,f(x)=3x,试研究函数y=f(x)在区间(0,+∞)上是否可能是单调函数?若可能,求出a的取值范围;若不可能,请说明理由.?
已知函数f(x)=1-2ax+a2(a>0,a≠1)是定义在R上的奇函数(1)求a的值;(2)用定义法证明f(x)在定义域R上单调递增;(3)解不等式f(x2-2)+f(x)>0.?
已知α,β是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=2x-kx2+1的定义域为[α,β].(Ⅰ)判断函数f(x)在定义域内的单调性,并证明.(Ⅱ)记:g(k)=maxf(x)-minf(x),若对任意k∈R,恒有g(k)≤a?√1+k2成立,求实数a 的取值范围.?
(1)判断函数f(x)=x2+1x在(1,+∞)上的单调性,并用定义法加以证明;(2)若函数f(x)=x2+ax在区间(1,+∞)上的单调递增,求实数a的取值范围.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®