试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=ln(x-1)+12x2-ax,a>0.(I)若f(x)存在单调递减区间,求a的取值范围;(Ⅱ)记f(x)在[2,+∞)的最小值为f(t),求t的值.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=ln(x-1)+
1
2
x
2
-ax,a>0.
(I)若f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)记f(x)在[2,+∞)的最小值为f(t),求t的值.
试题解答
见解析
解:(I)f(x)的定义域为(1,+∞),
f'(x)=
1
x-1
+x-a=
1
x-1
+(x-1)+1-a≥2+1-a=3-a
当且仅当x=2时f′(x)取最小值3-a.
当a>3时,3-a<0,
f(x)存在单调递减区间;
当a≤3时,3-a≥0,不存在使得f′(x)<0的区间
综上,a的取值范围是(3,+∞);
(II)f'(x)=
x
2
-(a+1)x+a+1
x-1
,对于分子,
△=(a+1)
2
=4(a+1)=(a+1)(a-3),
由(I)可知,当0<a≤3时,f(x)在(1,+∞)单调递增;
当a>3时,△>0,由x
2
-(a+1)x+a+1=0,
得x
2
=
a+1-
√
(a+1)(a-3)
2
,x
2
=
a+1+
√
(a+1)(a-3)
2
由x
1
-2=
a-3-
√
(a+1)(a-3)
2
<0x
2
-2=
a-3+
√
(a+1)(a-3)
2
>0
知x
1
<2<x
2
当x∈(2,x
2
)时,f'(x)<0,f(x)单调递减
当x∈(x
2
,+∞)时,f'(x)>0,f(x)单调递增.
综上,当0<a≤3时,t=2;当a>3时,t=
a+1+
√
a
2
-2a-3
2
.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)若a=1,求f(x)的单调区间;(2)若a>0,设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式;(3)设h(x)=f(x)x,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围.?
函数f(x)=lnx-a(x-1)x(x>0,a∈R).(1)试求f(x)的单调区间;(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;(3)求证:不等式1lnx-1x-1<12对于x∈(1,2)恒成立.?
已知函数f(x)={(x+2)2 x<00 x=0(x-2)2 x>0,(1)写出f(x)的单调区间;(2)若f(x)=16,求相应x的值.?
设a>0,f(x)=x2+a|lnx-1|.(1)当a=2时,求f(x)的单调区间;(2)当x∈[1,+∞)时,求f(x)的最小值.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®