试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
f(x)=x2-2x|x-1|+1 的图象,并求出它的定义域和函数的单调区间(无需证明)试题及答案-单选题-云返教育
试题详情
f(x)=
x
2
-2x
|x-1|+1
的图象,并求出它的定义域和函数的单调区间(无需证明)
试题解答
见解析
解:当x≥1时,f(x)=
x
2
-2x
|x-1|+1
=
x
2
-2x
x-1+1
=x-2
当x<1时,f(x)=
x
2
-2x
|x-1|+1
=
x
2
-2x
1-x+1
=-x
所以f(x)=
{
x-2(x≥1)
-x(x<1)
其图象为:
所以函数的定义域为R;
在(-∞,1)上递减;在(1,+∞)上递增.
标签
必修1
人教A版
单选题
高中
数学
Venn图表达集合的关系及运算;并集及其运算;补集及其运算;集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;集合关系中的参数取值问题;集合中元素个数的最值;交、并、补集的混合运算;交集及其运算;空集的定义、性质及运算;全集及其运算;元素与集合关系的判断;子集与真子集;方根与根式及根式的化简运算;分数指数幂;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值;有理数指数幂的运算性质;正整数指数函数;指数函数的单调性的应用;指数函数的单调性与特殊点;指数函数的定义、解析式、定义域和值域;指数函数的实际应用;指数函数的图像变换;指数函数的图像与性质;指数函数综合题;指数型复合函数的性质及应用;二分法的定义;二分法求方程的近似解;根的存在性及根的个数判断;函数的零点;函数的零点与方程根的关系;函数零点的判定定理;函数与方程的综合运用
相关试题
函数y=|2-x-2|的单调增区间为 .?
y=1-x1+x的单调递减区间是 .?
函数y=(k+2)x+1在实数集上是增函数,则k的范围是 .?
若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是 .?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®