试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
设M为平面内一些向量组成的集合,若对任意正实数λ和向量a∈M,都有λa∈M,则称M为“点射域”,则下列平面向量的集合为“点射域”的是( )试题及答案-单选题-云返教育
试题详情
设M为平面内一些向量组成的集合,若对任意正实数λ和向量a∈M,都有λa∈M,则称M为“点射域”,则下列平面向量的集合为“点射域”的是( )
试题解答
B
解:根据“点射域”的定义,可得向量
a
∈M时,与它共线的向量λ
a
∈M也成立,
对于A,M={(x,y)|y≥x
2
}表示终点在抛物线y≥x
2
上及其张口以内的向量构成的区域,
向量
a
=(1,1)∈M,但3
a
=(3,3)?M,故它不是“点射域”;
对于B,M={(x,y)|
{
x-y≥0
x+y≤0
},可得任意正实数λ和向量
a
∈M,都有λ
a
∈M,故它是“点射域”;
对于C,M={(x,y)|x
2
+y
2
-2y≥0},表示终点在圆x
2
+y
2
-2y=0上及其外部的向量构成的区域,
向量
a
=(0,2)∈M,但
1
2
a
=(0,1)?M,故它不是“点射域”;
对于D,M={(x,y)|3x
2
+2y
2
-12<0},表示终点在椭圆 3x
2
+2y
2
=12的向量构成的区域,
向量
a
=(1,1)∈M,但3
a
=(3,3)?M,故它不是“点射域”.
综上所述,满足是“点射域”的区域只有B
故选B.
标签
必修1
人教A版
单选题
高中
数学
Venn图表达集合的关系及运算;并集及其运算;补集及其运算;集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;集合关系中的参数取值问题;集合中元素个数的最值;交、并、补集的混合运算;交集及其运算;空集的定义、性质及运算;全集及其运算;元素与集合关系的判断;子集与真子集;方根与根式及根式的化简运算;分数指数幂;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值;有理数指数幂的运算性质;正整数指数函数;指数函数的单调性的应用;指数函数的单调性与特殊点;指数函数的定义、解析式、定义域和值域;指数函数的实际应用;指数函数的图像变换;指数函数的图像与性质;指数函数综合题;指数型复合函数的性质及应用;二分法的定义;二分法求方程的近似解;根的存在性及根的个数判断;函数的零点;函数的零点与方程根的关系;函数零点的判定定理;函数与方程的综合运用
相关试题
已知映射,f:A→B其中A=B=R,对应法则f:y=-x2+2x对于实数k∈B在集合A中不存在原象,则k的范围是( )?
若集合P={x|0≤x≤4},Q={y|0≤y≤2},则下列对应法则中不能从P到Q建立映射的是( )?
已知集合A={a,b,c},B={-1,0,1},定义:f是一个确定的对应关系,如果?x∈A,?y∈B使y=f(x),且y唯一确定,那么就称f是集合A到B的一个映射.则满足f(a)+f(b)+f(c)>0的映射f的个数是( )?
已知A=B={1,2,3,4,5},从A到B的映射f满足f(1)≤f(2)≤f(3)≤f(4)≤f(5),且f的象有且只有2个,则适合条件的映射的个数为( )?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®