见解析
解:根据题意,得
∵log21=0,∴[log21]=0
又∵log22、log23∈[1,2),∴[log22]+[log23]=1
∵log24、log25、…、log27∈[2,3),∴[log24]=[log25]=…=[log27]=2
依此类推,得[log28]=[log29]=…=[log215]=3;[log216]=[log217]=…=[log231]=4;
[log232]=[log233]=…=[log263]=5;[log264]=[log265]=…=[log2127]=6;
[log2128]=[log2129]=…=[log2255]=7;[log2256]=[log2257]=…=[log2511]=8;
[log2512]=[log2513]=…=[log21023]=9
结合[log21024]=[10]=10,可得
[log21]+[log22]+[log23]+[log24]+…+[log21024]
=0+2×1+22×2+23×3+24×4+25×5+26×6+27×7+28×8+29×9+10
=9×210-(2+22+23+…+29)+10=8204.