• 偶函数f(x)满足f(x-2)=f(x+2),且在x∈[0,2]时,f(x)=2cosπ4x,则关于x的方程f(x)=(12)x,在x∈[-2,6]上解的个数是( )试题及答案-单选题-云返教育

    • 试题详情

      偶函数f(x)满足f(x-2)=f(x+2),且在x∈[0,2]时,f(x)=2cos
      π
      4
      x,则关于x的方程f(x)=(
      1
      2
      x,在x∈[-2,6]上解的个数是(  )

      试题解答


      D
      解:∵当x∈[0,2]时,0≤
      π
      4
      x≤
      π
      2
      ,f(x)=2cos
      π
      4
      x
      ∴函数f(x)在x=0时,函数值有最大值f(0)=2cos0=2,
      在x=2时,函数值有最小值f(2)=2cos
      π
      2
      =0.
      由此作出函数f(x)在x∈[0,2]时的图象,呈减函数趋势如图
      ∵函数f(x)是偶函数,
      ∴f(x)在[-2,0]上的图象与[0,2]上的图象关于y轴对称,如图所示
      ???函数f(x)满足f(x-2)=f(x+2),∴函数f(x)是周期T=4的周期函数.
      因此,将f(x)在[-2,2]上的图象向右平移一个周期,得f(x)在[2,6]上的图象
      ∴函数f(x)在[-2,6]上的图象如右图所示,是位于x轴上方的两段余弦型曲线弧
      在同一坐标系内作出函数y=(
      1
      2
      x的图象,可得它经过点(0,1),呈减函数趋势如图
      因为两个图象有4个交点,得关于x的方程f(x)=(
      1
      2
      x的实数根也有4个
      故选D

    Venn图表达集合的关系及运算;并集及其运算;补集及其运算;集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;集合关系中的参数取值问题;集合中元素个数的最值;交、并、补集的混合运算;交集及其运算;空集的定义、性质及运算;全集及其运算;元素与集合关系的判断;子集与真子集;方根与根式及根式的化简运算;分数指数幂;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值;有理数指数幂的运算性质;正整数指数函数;指数函数的单调性的应用;指数函数的单调性与特殊点;指数函数的定义、解析式、定义域和值域;指数函数的实际应用;指数函数的图像变换;指数函数的图像与性质;指数函数综合题;指数型复合函数的性质及应用;二分法的定义;二分法求方程的近似解;根的存在性及根的个数判断;函数的零点;函数的零点与方程根的关系;函数零点的判定定理;函数与方程的综合运用相关试题

    MBTS ©2010-2016 edu.why8.cn