如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
解:∵二次函数的图象开口向上,
∴a>0,
∵对称轴在y轴的左边,,
∴b>0,
∵图象与y轴的交点坐标是(0,-2),过(1,0)点,
代入得:a+b-2=0,
∴a=2-b,b=2-a,
∴y=ax2+(2-a)x-2,
当x=-1时,y=a-b+c=a-(2-a)-2=2a-4,
∵b>0,
∴b=2-a>0,
∴a<2,
∵a>0,
∴0<a<2,
∴0<2a<4,
∴-4<2a-4<0,
即-4<P<0,
故选A.