试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?试题及答案-解答题-云返教育
试题详情
阅读以下材料,并解答以下问题.
“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.
(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?
(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?
(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?
试题解答
见解析
解:(1)∵完成从A点到B点必须向北走,或向东走,
∴到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和,
故使用分类加法计数原理,由此算出从A点到达其余各交叉点的走法数,填表如图1.
答:从A点到B点的走法共有35种.
(2)方法一:可先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它,即得从A点到B点,但不经过交叉点C的走法数.
完成从A点出发经C点到B点这件事可分两步,先从A点到C点,再从C点到B点,
使用分类加法计数原理,算出从A点到C点的走法是3种,见图2;算出从C点到B点的走法为6种,见图3,再运用分步乘法计数原理,得到从A点经C点到B点的走法有3×6=18种.
∴从A点到B点但不经过C点的走法数为35-18=17种.
方法二:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段,运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数见图4,
∴从A点到B点并禁止经过C点的走法数为35-18=17种.
(3)P(顺利开车到达B点)=
17
35
.
答:任选一种走法,顺利开车到达B点的概率是
17
35
.
标签
八年级上册
华师大版
北师大版
解答题
初二
数学
推理与论证
相关试题
甲、乙两同学开展“投球进筐”比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束;②若一次未进可再投第二次,以此类推,但每局最多只能投8次,若8次投球都未进,该局也结束;③计分规则如下:a.得分为正数或0;b.若8次都未投进,该局得分为0;c.投球次数越多,得分越低;d. 6局比赛的总得分高者获胜.(1)设某局比赛第n(n=1,2,3,4,5,6,7,8)次将球投进,请你按上述约定,用公式、表格或语言叙述等方式,为甲、乙两位同学制定一个把n换算为得分M的计分方案;(2)若两人6局比赛的投球情况如下(其中的数字表示该局比赛进球时的投球次数,“×”表示该局比赛8次投球都未进):根据上述计分规则和你制定的计分方案,确定两人谁在这次比赛中获胜. 第一局 第二局 第三局 第四局 第五局 第六局 甲 5 x 4 8 1 3 乙 8 2 4 2 6 x?
质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品.若把从0时到24时的每十分钟作为一个时间段(共计144个时间段),请你设计一种随机抽取30个时间段的方法,使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取?(要求写出具体的操作步骤)?
下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填入下表.赢法一: “布”赢“锤子” “锤子”赢“剪子” “剪子”赢“布” 赢的次数 赢法二: “布”赢“锤子” “锤子”赢“剪子” “剪子”赢“布” 赢的次数 赢法三: “布”赢“锤子” “锤子”赢“剪子” “剪子”赢“布” 赢的次数?
附加题:要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额.(1)试提出一种分配方案,使得分到相同名额的学校少于4所;(2)证明:不管怎样分配,至少有3所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校.?
小黄同学上楼,边走边数台阶,从一楼走到四楼,共走了54级台阶.如果每层楼之间的台阶数相同,他从一楼到八楼所要走的台阶数一共是( )?
假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上、右下)爬行,从一间蜂房爬到右边相邻的蜂房中去.例如,密封爬到1号蜂房的爬法有:蜜蜂?1号;蜜蜂?0号?1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法( )?
唐寅点秋香的故事家喻户晓了,现在我们来玩个游戏:“唐伯虎点秋香”.[规则]下面有四个人,其中一个人是秋香,请你通过下面提示辨别出谁是秋香.友情提示:这四个人分别是:春香、夏香、秋香、冬香.[所给人物]A,B,C,D①A不是秋香,也不是夏香;②B不是冬香,也不是春香;③如果A不是冬香,那么C不是夏香;④D既不是夏香,也不是春香;⑤C不是春香,也不是冬香.若上面的命题都是真命题,问谁是秋香( )?
某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是( )?
某市出租车的收费标准是:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米以后,每增加1千米加收1.2元(不足1千米按1千米收费),某人乘坐这种出租车一次,付费11元,她经过的这段路程的最大值为( )?
(2005?马尾区)在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1:2:3:5.若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是( )?
第1章 勾股定理
1.1 探索勾股定理
勾股定理
勾股定理的证明
第2章 实数
2.1 认识无理数
无理数
第3章 位置与坐标
3.1 确定位置
坐标确定位置
第4章 一次函数
4.1 函数
常量与变量
函数的表示方法
函数的概念
函数的图象
函数关系式
函数值
函数自变量的取值范围
第5章 二元一次方程组
5.1 认识二元一次方程组
二元一次方程的定义
二元一次方程的解
二元一次方程组的定义
二元一次方程组的解
解二元一次方程
第6章 数据的分析
6.1 平均数
计算器-平均数
加权平均数
算术平均数
第7章 平行线的证明
7.1 为什么要证明
推理与论证
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®