过线段AB的两端作AC⊥AB于A,BD⊥AB于B,连AD、BC交于O,AC=a,BD=b(b>a),那么点O到线段AB的距离为 .
解:①如图,若AC,BD在AB的两侧,作OP⊥AB交BA延长线于P,则OP∥CA∥BD,
所以OP:DB=AO:AD
而AO:DO=CA:DB=a:b
所以AO:AD=a:(b-a)
所以OP:b=a:(b-a)
所以OP=;
②如图,若AC、BD在AB的同侧
作OP⊥AB于P,则CA∥OP∥BD
因为OP:DB=AO:AD
AO:DO=CA:DB=a:b
所以AO:AD=a:(a+b)
所以OP:b=a:(a+b)
所以OP=.
故答案为:或
.