试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=-1a+2x(x>0).(1)判断f(x)在(0,+∞)上的单调性,并证明;(2)解关于x的不等式f(x)>0;(3)若f(x)+2x≥0在(0,+∞)上恒成立,求a的取值范围.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=-
1
a
+
2
x
(x>0).
(1)判断f(x)在(0,+∞)上的单调性,并证明;
(2)解关于x的不等式f(x)>0;
(3)若f(x)+2x≥0在(0,+∞)上恒成立,求a的取值范围.
试题解答
见解析
解:(1)f(x)在(0,+∞)上为减函数,证明如下:
∵f'(x)=-
2
x
2
<0,
∴f(x)在(0,+∞)上为减函数.
(2)由f(x)>0得-
1
a
+
2
x
>0,
即
x-2a
ax
<0.
①当a>0时,不等式解集为{x|0<x<2a}.
②当a<0时,原不等式为
x-2a
x
>0.
解集为{x|x>0}.
(3)若f(x)+2x≥0在(0,+∞)上恒成立,
即-
1
a
+
2
x
+2x≥0.∴
1
a
≤
2
x
+2x.
∵
2
x
+2x≥4,∴
1
a
≤4.
解得a<0或a≥
1
4
.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;元素与集合关系的判断;子集与真子集
相关试题
已知f(x)是奇函数,当x>0时,f(x)=2x+3x+1(I)当x<0时,求f(x)的解析式;(II)用定义证明:f(x)在(0,+∞)上是减函数.?
已知函数f(x)=x+ax(a>0).(1)若不等式f(x)<b的解集是(1,3),求不等式ax2-bx+1<0的解集;(2)若f(1)=f(2),证明f(x)在(0,√2]上是单调递减函数.?
已知函数f(x)=|x+m-1|x-2,m>0且f(1)=-1.(1)求实数m的值;(2)判断函数y=f(x)在区间(-∞,m-1]上的单调性,并用函数单调性的定义证明;(3)求实数k的取值范围,使得关于x的方程f(x)=kx分别为:①有且仅有一个实数解;②有两个不同的实数解;③有三个不同的实数解.?
设函数f(x)的定义域为R,对于任意实数m、n,总有f(m+n)=f(m)?f(n),且x>0时0<f(x)<1.(1)证明:f(0)=1,且x<0时f(x)>1;(2)证明:f(x)在R 上单调递减;(3)设A={(x,y)|f(x2)?f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=?,确定a 的范围.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®