• 对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)?f(x2);②f(x1?x2)=f(x1)+f(x2);③f(x1)-f(x2)x1-x2>0;④f(x1+x22)<f(x1)+f(x2)2.当f(x)=lgx时,上述结论中正确结论的序号是 .试题及答案-单选题-云返教育

    • 试题详情

      对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
      ①f(x
      1+x2)=f(x1)?f(x2);
      ②f(x
      1?x2)=f(x1)+f(x2);
      f(x1)-f(x2)
      x1-x2
      >0;
      ④f(
      x1+x2
      2
      )<
      f(x1)+f(x2)
      2

      当f(x)=lgx时,上述结论中正确结论的序号是
               

      试题解答


      ②③
      解:①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=lgx1?lgx2
      ②f(x
      1?x2)=lgx1x2=lgx1+lgx2=f(x1)+f(x2
      ③f(x)=lgx在(0,+∞)单调递增,则对任意的0<x
      1<x2,d都有f(x1)<f(x2
      f(x1)-f(x2)
      x1-x2
      >0
      ④f(
      x1+x2
      2
      )=lg
      x1+x2
      2
      f(x1)+f(x2)
      2
      =
      lgx1+lgx2
      2
      =
      lgx1x2
      2

      x1+x2
      2
      x1x2
      ∴lg
      x1+x2
      2
      ≥lg
      x1x2
      =
      1
      2
      lgx1x2
      故答案为:②③
    MBTS ©2010-2016 edu.why8.cn