试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
对于定义域为D的函数y=f(x),如果存在区间[m,n]?D,同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n]时,则称[m,n]是该函数的“和谐区间”.(1)判断函数是否存在“和谐区间”,并说明理由;(2)如果[m,n]是函数的一个“和谐区间”,求n-m的最大值;(3)有些函数有无数个“和谐区间”,如y=x,请你再举一类(无需证明)试题及答案-单选题-云返教育
试题详情
对于定义域为D的函数y=f(x),如果存在区间[m,n]?D,同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n]时,则称[m,n]是该函数的“和谐区间”.
(1)判断函数
是否存在“和谐区间”,并说明理由;
(2)如果[m,n]是函数
的一个“和谐区间”,求n-m的最大值;
(3)有些函数有无数个“和谐区间”,如y=x,请你再举一类(无需证明)
试题解答
见解析
(1)设[m,n]是函数
的“和谐区间”,则
在[m,n]上单调.
所以[m,n]?(-∞,0)或[m,n]?(0,+∞)
因此,
在[m,n]上为增函数.
则f(m)=m,f(n)=n.即方程
有两个解m,n
又
可化为x
2
-3x+4=0,而x
2
-3x+4=0无实数解.
所以,函数
不存在“和谐区间”
(2)因为
在[m,n]上是单调的,
所以[m,n]?(-∞,0)或[m,n]?(0,+∞)
则f(m)=m,f(n)=n
所以m,n是
的两个同号的实数根
即方程a
2
x-(a
2
+a)x+1=0有两个同号的实数根,注意到
只要△=(a
2
+a)
2
-4a
2
>0,解得a>1或a<-3
所以
其中a>1或a<-3,所以,当a=3时,n-m取最大值
(3)答案不唯一,如可写出以下函数:y=a-x(a为常数),
(k>0为常数)
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;元素与集合关系的判断;子集与真子集
相关试题
对于函数y=f(x)(x∈D)若同时满足下列两个条件,则称f(x)为D上的闭函数.①f(x)在D上为单调函数;②存在闭区间[a,b]?D,使f(x)在[a,b]上的值域也是[a,b].(1)求闭函数y=-x3符合上述条件的区间[a,b];(2)若f(x)=x3-3x2-9x+4,判断f(x)是否为闭函数.?
如果函数y=ax(ax-3a2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值范围是?
设F(x)=f(x)+f(-x),x∈R,[-π,-]是函数F(x)的单调递增区间,将F(x)的图象按向量=(π,0)平移得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是?
函数的单调减区间是 .?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®