试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
设F(x)=f(x)+f(-x),x∈R,[-π,-]是函数F(x)的单调递增区间,将F(x)的图象按向量=(π,0)平移得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是试题及答案-单选题-云返教育
试题详情
设F(x)=f(x)+f(-x),x∈R,[-π,-
]是函数F(x)的单调递增区间,将F(x)的图象按向量
=(π,0)平移得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是
试题解答
A
由于F(-x)=F(x),∴F(x)是偶函数,
其图象关于y轴对称,
∴[
,π]是函数F(x)的单调递减区间.
又F(x)的图象按向量
=(π,o)平移得到一个新的函数G(x)的图象,
∴G(x)的一个单调递减区间是[
+π,π+π]
即[
,2π].
故选A.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;元素与集合关系的判断;子集与真子集
相关试题
已知函数f(x)=.对于下列命题:①函数f(x)是周期函数; ②函数f(x)既有最大值又有最小值;③函数f(x)的定义域是R,且其图象有对称轴;④对于任意x∈(-1,0),f′(x)<0(f′(x)是函数f(x)的导函数).其中真命题的序号是 .(填写出所有真命题的序号)?
设F(x)=f(x)+f(-x),x∈R,[-π,-]是函数F(x)的单调递增区间,将F(x)的图象按向量=(π,0)平移得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是?
已知函数y=f(x)的定义域为R,则下列命题正确的有 .①若,则y=f(x)的周期为2;②y=f(x-1)与y=f(1-x)的图象关于直线x=0对称;③若f(x-1)=f(1-x),且(-2,-1)是f(x)的单调减区间,则(1,2)是f(x)的单调增区间;④若函数y=f(x)的图象关于点(-1,0)对称,则函数y=f(x-2)+1的图象关于点(1,1)对称.?
已知函数,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®