试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
有下列几个命题:①函数y=2x2+x+1在(0,+∞)上不是增函数;②函数y=在(-∞,-1)∪(-1,+∞)上是减函数;③函数y=的单调区间是[-2,+∞);④已知f(x)在R上是增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b).其中正确命题的序号是 .试题及答案-单选题-云返教育
试题详情
有下列几个命题:
①函数y=2x
2
+x+1在(0,+∞)上不是增函数;②函数y=
在(-∞,-1)∪(-1,+∞)上是减函数;③函数y=
的单调区间是[-2,+∞);④已知f(x)在R上是增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b).其中正确命题的序号是
.
试题解答
④
①根据二次函数的性质,可知函数y=2x
2
+x+1在[-4,+∝)单调增.
②y=
在(-∞,-1)和(-1,+∞)上均为减函数.但在并集上并不一定是减函数.
③要研究函数y=
的单调区间,首先被开方数5+4x-x
2
≥0,
④通过函数的单调性,a+b>0,可得出答案.
①∵函数y=2x
2
+x+1,对称轴为x=-
,开口向上
∴函数在[-4,+∝)单调增
∴在(0,+∞)上是增函数,
∴①错;
②虽然(-∞,-1)、(-1,+∞)都是y=
的单调减区间,但求并集以后就不再符合减函数定义,
∴②错;
③5+4x-x
2
≥0,
解得-1≤x≤5,由于[-2,+∞)不是上述区间的子区间,
∴③错;
④∵f(x)在R上是增函数,且a>-b,
∴b>-a,f(a)>f(-b),f(b)>f(-a),f(a)+f(b)>f(-a)+f(-b),
因此④是正确的.
故答案:④
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;元素与集合关系的判断;子集与真子集
相关试题
若函数f(x)=-x2+(2a-1)|x|有四个不同的单调区间,则实数a的取值范围是 .?
动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是?
下列四个函数中,在区间(0,1)上为减函数的是?
下列函数中,在(0,+∞)上为减函数的是?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®