试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知函数f(x)=x -k2+k+2(k∈N),满足f(2)<f(3).(1)求k的值并求出相应的f(x)的解析式;(2)对于(1)中的函数f(x),使得g(x)=f(x)-(m-1)x+m在[0,2]上是单调函数,求实数m的取值范围.试题及答案-单选题-云返教育
试题详情
已知函数f(x)=x
-k
2
+k+2
(k∈N),满足f(2)<f(3).
(1)求k的值并求出相应的f(x)的解析式;
(2)对于(1)中的函数f(x),使得g(x)=f(x)-(m-1)x+m在[0,2]上是单调函数,求实数m的取值范围.
试题解答
见解析
解:(1)由f(2)<f(3),则-k
2
+k+2>0,解得-1<k<2.
又k∈N,则k=0,1,此时,f(x)=x
2
.
(2)由g(x)=f(x)-(m-1)x+m=x
2
-(m-1)x+m,
当x∈[0,2]时单调只需:
m-1
2
≥2或
m-1
2
≤0,
则m≥5,或m≤0,
即实数m的取值范围为(-∞,0]∪[5,+∞).
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;元素与集合关系的判断;子集与真子集
相关试题
已知函数f???x)=4x2-4mx+m2-2m+2的图象与x轴有两个交点(1)设两个交点的横坐标分别为x1,x2,试判断函数g(m)=x12+x22有没有最大值或最小值,并说明理由.(2)若f(x)=4x2-4mx+m2-2m+2与g(x)=mx在区间[2,3]上都是减函数,求实数m的取值范围.?
已知偶函数f(x)在[0,+∞)上是增函数,且 f(12)=0,求不等式f(logax)>0 的解集.?
定义在(-4,4)上的函数f(x)满足f(-x)=-f(x),且f(a+1)+f(1-2a)>0,若f(x)是(-4,4)上的减函数,求实数a的取值范围.?
已知函数f(x)=2x2+(x-a)2.(Ⅰ)当a=0时,解不等式f(log2x)>f(3);(Ⅱ)若f(x)在[0,1]上有最小值9,求a的值.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®