• 函数f(x)=x+2ax(Ⅰ)???断并证明函数的奇偶性;(Ⅱ)若a=2,证明函数f(x)在(2,+∞)上单调递增;(Ⅲ)在满足(Ⅱ)的条件下,解不等式f(t2+2)+f(-2t2+4t-5)<0.试题及答案-单选题-云返教育

    • 试题详情

      函数f(x)=x+
      2a
      x

      (Ⅰ)???断并证明函数的奇偶性;
      (Ⅱ)若a=2,证明函数f(x)在(2,+∞)上单调递增;
      (Ⅲ)在满足(Ⅱ)的条件下,解不等式f(t
      2+2)+f(-2t2+4t-5)<0.

      试题解答


      见解析
      (I)解:该函数为奇函数.
      证明:函数的定义域为(-∞,0)∪(0,+∞)关于原点对称,
      且f(-x)=-x+
      a
      -x
      =-(x+
      a
      x
      )=-f(x),
      故函数f(x)为奇函数.
      (II)当a=2时,f(x)=x+
      4
      x

      ?2<x
      1<x2
      则f(x
      1)-f(x2)=(x1+
      4
      x1
      )-(x2+
      4
      x2
      )=
      (x1-x2)(x1x2-4)
      x1x2

      ∵2<x
      1<x2,∴x1-x2<0,x1x2>4,即x1x2-4>0.
      (x1-x2)(x1x2-4)
      x1x2
      <0,
      ∴f(x
      1)<f(x2???,函数f(x)在(2,+∞)上单调递增.
      (III)∵f(x)为奇函数,∴f(t
      2+2)<-f(-2t2+4t-5)=f(2(t-1)2+3),
      ∵t
      2+2≥2,2(t-1)2+3>2,函数f(x)在(2,+∞)上单调递增,
      ∴t
      2+2<2t2-4+5,
      化为t
      2-4t+3>0,解得t<1或t>3.
    MBTS ©2010-2016 edu.why8.cn