试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
设a为实数,函数f(x)=x|x-a|,其中x∈R.(1)判断函数f(x)的奇偶性,并加以证明;(2)写出函数f(x)的单调区间.试题及答案-单选题-云返教育
试题详情
设a为实数,函数f(x)=x|x-a|,其中x∈R.
(1)判断函数f(x)的奇偶性,并加以证明;
(2)写出函数f(x)的单调区间.
试题解答
见解析
解:(1)当a=0时,f(x)=x|x|,所以f(x)为奇函数…(1分)
因为定义域为R关于原点对称,且f(-x)=-x|-x|=-f(x),所以f(x)为奇函数.…(3分)
当a≠0时,f(x)=x|x-a|为非奇非偶函数,…(4分)
f(a)=0,f(-a)=-a|2a|,所以f(-a)≠f(a),f(-a)≠-f(a)
所以f(x)是非奇非偶函数.…(6分)
(2)当a=0时,f(x)=
{
x
2
x≥0
-x
2
x<0
,f(x)的单调递增区间为(-∞,+∞);…(8分)
当a>0时,f(x)=
{
x
2
-ax
x≥a
-x
2
+ax
x<a
f(x)的单调递增区间为(-∞,
a
2
)和(a,+∞);…(10分)
f(x)的单调递减区间为(
a
2
,a);…(12分)
当a<0时,f(x)=
{
x
2
-ax
x≥a
-x
2
+ax
x<a
f(x)的单调递增区间为(-∞,a)和(
a
2
,+∞);…(14分)
f(x)的单调递减区间为(a,
a
2
)…(16分)
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
设函数f(x)=√a2-x2|x+a|+a.(a∈R且a≠0)(1)分别判断当a=1及a=-2时函数的奇偶性.(2)在a∈R且a≠0的条件下,将(1)的结论加以推广,使命题(1)成为推广后命题的特例,并对推广的结论加以证明.?
已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(I)求f(1),f???-1)的值;(Ⅱ)判断f(x)的奇偶性,并说明理由.?
已知函数f(x)=1+1x-1,g(x)=f(2|x|).(I)求函数f(x)和g(x)的定义域;(II)函数f(x)和g(x)是否具有奇偶性,并说明理由;(III)证明函数g(x)在(-∞,0)上为增函数.?
已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使得g(x)=f(x)-x|x|在R上是奇函数或是偶函数?若存在,求出a的值,若不存在,请说明理由.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®