试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
已知奇函数f(x)的定义域为(-1,1),且f(x)在(-1,1)上单调递减,如果f(1-a)+f(1-a2)<0,试求实数a的取值范围.试题及答案-单选题-云返教育
试题详情
已知奇函数f(x)的定义域为(-1,1),且f(x)在(-1,1)上单调递减,如果f(1-a)+f(1-a
2
)<0,试求实数a的取值范围.
试题解答
见解析
解:由f(x)为(-1,1)上的奇函数且f(1-a)+f(1-a
2
)<0,可得f(1-a)<-f(1-a
2
)=f(a
2
-1),
∵f(x)在(-1,1)上单调递减,
∴
{
-1<1-a<1
-1<1-a
2
<1
1-a>a
2
-1
,∴
{
0<a<2
-
√
2
<a<0或0<a<
√
2
-2<a<1
∴0<a<1
∴实数a的取值范围是(0,1).
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
函数f(x)为定义在R上的奇函数,当 x∈(0,1)时,f(x)=2x2x+1.(1)求函数f(x)在(-1,1)上的解析式;(2)判断函数f(x)在(0,1)上的单调性并证明.?
已知f(x)为定义在(-∞,0)∪(0,+∞)上的奇函数,x>0时,f(x)=1-2x,(1)求函数f(x)的解析式,(2)判断函数f(x)在(0,+∞)的单调性并用定义证明.?
已知函数f(x)=x-ax2+bx+1为R上奇函数.(1)求a,b的值;(2)判断f(x)在(0,1)上的单调性,并用定义法证明你的结论;(3)当x∈[a,a+1]时,求函数f(x)的最大值.?
已知定义在(-1,1)上的奇函数f(x)在整个定义域上是减函数,若f(1-a)+f(1-3a)<0,求实数a的取值范围.?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®