• 如图,在长方体ABCD-A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中点.(Ⅰ)求证:A1C∥平面BED;(Ⅱ)求二面角E-BD-A的大小;(Ⅲ)求点E到平面A1BCD1的距离.试题及答案-解答题-云返教育

    • 试题详情

      如图,在长方体ABCD-A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中点.
      (Ⅰ)求证:A
      1C∥平面BED;
      (Ⅱ)求二面角E-BD-A的大小;
      (Ⅲ)求点E到平面A
      1BCD1的距离.

      试题解答


      见解析
      解:(I)如图建立空间直角坐标系,取BD的中点O,
      连接EO.
      A
      1(0,0,4),C(3,3,0),
      E(0,0,2),O(
      3
      2
      3
      2
      ,0)(2分)
      A1C
      =(3,3,-4),
      EO
      =(
      3
      2
      3
      2
      ,-2),
      A1C
      =2
      EO
      ,∴A1C∥EO.
      ∵EO?平面BED,A
      1C?平面BED,
      ∴A
      1C∥平面BED.(5分)
      (II)由于AE⊥平面ABCD,
      AE
      =(0,0,2)就是平面ABCD的法向量.(6分)
      B(3,0,0),D(0,3,0),
      BE
      =(-3,0,2),
      BD
      =(-3,3,0)
      设平面EBD的法向量为
      n
      =(x,y,z).
      {
      n
      ?
      BE
      =0
      n
      ?
      BD
      =0
      {
      -3x+2z=0
      -3x+3y=0.

      令z=3,则
      n
      =(2,2,3).(7分)
      cos<
      n
      AE
      >=
      n
      ?
      AE
      |
      n
      |?|
      AE
      |
      =
      6
      2
      17
      =
      3
      17
      17

      ∴二面角E-BD-A的大小为arrccos
      3
      17
      17
      .(9分)
      (III)D
      1(0,3,4),则
      A1D1
      =(0,3,0),
      设平面A
      1BCD1的法向量为
      m
      =(x′,y′,z′).
      {
      m
      ?
      A1D1
      =0
      m
      ?
      A1C
      =0.
      {
      3y′=0
      3x′+3y′-4z′=0.

      解得
      {
      y′=0
      x′=
      4
      3
      z′
      令z'=3,则
      m
      =(-4,0,-3).
      即点E到平面A
      1BCD1的距离是
      6
      5

      CE
      =(-3,-2,2),h=|
      n
      ?
      CE
      |
      m
      |
      |=
      6
      5
      .(14分)
    MBTS ©2010-2016 edu.why8.cn