• 设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q= .试题及答案-填空题-云返教育

    • 试题详情

      设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=         

      试题解答


      1
      根据{an}是公比为q的等比数列,设出首项和公比,写出前2项和,前3项和,根据{Sn}是等差数列,用写出的和设出的{Sn}的前三项得到等差中项的等式,解出关于q的方程,得到结果.

      设首项为a
      1,则
      s
      1=a1
      s
      2=a1+a1q
      s
      3=a1+a1q+a1q2
      由于{Sn}是等差数列,
      故2(a
      1+a1q)=a1+a1+a1q+a1q2
      q
      2-q=0
      解得q=1.
      故答案为:1.

    等差关系的确定相关试题

    MBTS ©2010-2016 edu.why8.cn