试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的不动点.已知二次函数f(x)=ax2+bx+c(a>0),满足{f(0)≥1f(1+sinα)≤1(α∈R),且f(x)有两个不动点x1,x2,记函数f(x)的对称轴为x=x0,求证:如果x1<2<x2<4,那么x0>-1.试题及答案-单选题-云返教育
试题详情
对于函数f(x),若存在x
0
∈R,使得f(x
0
)=x
0
成立,则称x
0
为f(x)的不动点.已知二次函数f(x)=ax
2
+bx+c(a>0),满足
{
f(0)≥1
f(1+sinα)≤1(α∈R)
,且f(x)有两个不动点x
1
,x
2
,记函数f(x)的对称轴为x=x
0
,求证:如果x
1
<2<x
2
<4,那么x
0
>-1.
试题解答
见解析
证明:二次函数f(x)=ax
2
+bx+c(a>0),满足
{
f(0)≥1
f(1+sinα)≤1(α∈R)
,
∴
{
f(0)≥1
f(0)≤1
,即f(0)=1,
∴f(x)=ax
2
+bx+1,
设g(x)=f(x)-x=ax
2
+(b-1)x+1,
∵a>0,
∴由条件x
1
<2<x
2
<4,
得g(2)<0,g(4)>0.
即
{
4a+2b-1<0
16a+4b-3>0
,
由可行域可得
b
a
<2,
∴x
0
=-
b
2a
>-1.
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.?
设函数f(x)=a2lnx-x2+ax+b,已知a是正实数,若存在实数b,使得e≤f(x)≤e2+1对x∈[1,e]恒成立,试求a的取值范围.?
设函数f(x)=x2-2x+3.(1)当x∈[-2,2]时,求f(x)的值域.(2)解关于x的不等式:f(2x+1)<3.?
已知f(x)是在R上单调递减的一次函数,且f[f(x)]=4x-1.(1)求f(x);(2)求函数y=f(x)+x2-x在x∈[-1,2]上的最大与最小值.?
多项式是_______次_______项式.?
当x=1时,代数式的值为3,则代数式﹣2a﹣b﹣2的值为_________.?
把下列各数填在相应的大括号里(填序号).正数集合{ };负整数集合{ };整数集合{ };负分数集合{ }.?
下列哪个事例不能证明地球的形状?
下列现象中,能说明地球是球体形状的是?
我们生活的地球的形状应该是?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®