试题
试题
试卷
搜索
高中数学
小学
数学
语文
英语
初中
数学
语文
英语
物理
化学
生物
地理
历史
思品
高中
数学
语文
英语
物理
化学
生物
地理
历史
政治
首页
我的试题
试卷
自动组卷
教材版本:
全部
课本:
全部
题型:
全部
难易度:
全部
容易
一般
较难
困难
年级:
全部
一年级
二年级
三年级
四年级
五年级
六年级
年级:
全部
初一
初二
初三
年级:
全部
高一
高二
高三
年份:
全部
2017
2016
2015
2014
2013
2012
2011
2010-2007
2000-2006
地区:
全部
北京
上海
天津
重庆
安徽
甘肃
广东
广西
贵州
海南
河北
河南
湖北
湖南
吉林
江苏
江西
宁夏
青海
山东
山西
陕西
西藏
新疆
浙江
福建
辽宁
四川
黑龙江
内蒙古
若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x2-1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为 .试题及答案-单选题-云返教育
试题详情
若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知函数f(x)=x
2
-1和函数g(x)=2lnx,那么函数f(x)和函数g(x)的隔离直线方程为
.
试题解答
y=2x-2
解:作出函数f(x)=x
2
-1和函数g(x)=2lnx的图象,由图象可知,两个函数的交点坐标为(1,0),
要使f(x)≥kx+b和g(x)≤kx+b,
则y=kx+b,必须是两个函数在(1,0)处的公共切线,
即k+b=0,解得b=-k,
函数f′(x)=2x,
即k=f′(1)=2,∴b=-2,
即隔离直线方程为y=2x-2,
故答案为:y=2x-2
标签
必修1
人教A版
单选题
高中
数学
集合的包含关系判断及应用;集合的表示法;集合的分类;集合的含义;集合的确定性、互异性、无序性;集合的相等;元素与集合关系的判断;子集与真子集
相关试题
已知函数f(x)的定义域是D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②f(x5)=12f(x);③f(1-x)=1-f(x).则f(45)= ,f(112)= .?
定义在R上的奇函数f(x)满足:f(x+2)=-f(x)且当0≤x≤1时f(x)=x则这个函数是以 为周期的周期函数,且f(7.5)= .?
已知定义在R上的函数f(x)满足:①函数y=f(x-1)的图象关于点(1,0)对称;②对?x∈R,f(34-x)=f(34+x)成立;③当x∈(-32,-34]时,f(x)=log2(-3x+1),则f(2011)= .?
已知x∈R,f(x)为奇函数,且总有f(2+x)+f(2-x)=0,f(1)=-9,则f(2010)+f(2011)+f(2012)的值为 .?
设,则的大小关系是?
已知函数,其中常数满足(1)若,判断函数的单调性;(2)若,求时的的取值范围.?
已知函数(1)若,判断函数在上的单调性并用定义证明;(2)若函数在上是增函数,求实数的取值范围.?
函数的值域是 .?
已知是上增函数,若,则a的取值范围是?
函数的最大值为 .?
第1章 集合
1.1 集合的含义与表示
集合的表示法
集合的分类
集合的含义
集合的确定性、互异性、无序性
元素与集合关系的判断
第3章 指数函数和对数函数
3.1 正整数指数函数
正整数指数函数
第4章 函数应用
4.1 函数与方程
二分法的定义
二分法求方程的近似解
根的存在性及根的个数判断
函数的零点
函数的零点与方程根的关系
函数零点的判定定理
MBTS ©2010-2016
edu.why8.cn
关于我们
联系我们
192.168.1.1路由器设置
Free English Tests for ESL/EFL, TOEFL®, TOEIC®, SAT®, GRE®, GMAT®